Cho hình tứ diện SABC có đáy ABC là tam giác vuông tại B, có AB = a, BC =a\(\sqrt{5}\), SA vuông góc với (ABC), SA = a\(\sqrt{6}\)
a) Tính (SB;(ABC))
b) Tính (SA;(SBC))
Cho hình chóp S.ABCD đáy là hình vuông, SA vuông góc với (ABCD) a) CMR : BC vuông góc với (SAB); CD vuông góc với (SAD) b) CMR : BD vuông góc với (SAC) c) Kẻ AE vuông góc với SB. CMR : SB vuông góc với (ADE)
Cho hình chóp S.ABCD , tam giác ABC vuông góc tại C , SA vuông góc với (ABC ) a. CMR : BC vuông góc (SAC) b. Gọi E là hình chiếu của A lê SC . CMR : AE vuông góc ( SBC )
Cho S.ABC, SA vuông góc với đáy. Tam giác ABC vuông tại A. Xác định góc tạo bởi SB và (SAC )
Cho hình vuông ABCD, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Gọi I là trung điểm của AB, K là trung điểm của AD. Chứng minh: a. (SAD) vuông góc với (SAB) b. (SID) vuông góc với (ABCD) c. (SID) vuông góc (SKC)
Cho tứ diện ABCD có AB vuông góc với CD , AB=4 , CD=6 . M là điểm thuộc cạnh BC sao cho MC=2BM . Mặt phẳng (P) đi qua M song song với AB và CD . Diện tích thiết diện của (P) với tứ diện là
chóp S.ABCD có đáy là hbh. Lấy M, N, P lần lượt là trung điểm SB,AB, SC. Tìm thiết diện của chóp tạo bởi (anpha) qua NP và song song với AM 2, cho S.ABCD có AD//BC. Gọi G1, G2 là trọng tâm tam giác SAB và tam giác SAD. Tìm thiết diện của hình chóp tạo bởi (CG1G2)
Cho hình chóp (S.ABCD ) có đáy (ABCD ) là hình chữ nhật với (AB = 2a ), (BC = a ), cạnh SD vuông góc với (ABCD).
a) tính góc giữa (SA, (ABCD))
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi G là trọng tâm tam giác SAC. Mặt phẳng (a) qua G cắt SA; SB; SC; SD lần lượt tại A'B'C'D'.
1) Tính \(\dfrac{SA}{SA'}+\dfrac{SC}{SC'}-\left(\dfrac{SB}{SB'}-\dfrac{SD}{SD'}\right)\)
2 ) Tính \(\dfrac{SA}{SA'}+\dfrac{SB}{SB'}+\dfrac{SC}{SC'}+\dfrac{SD}{SD'}\)