Cho hình chóp A.ABCD có đáy là hình thang ABCD với đáy AD và BC. Biết AD = a. BC = b. Gọi I và J lần lượt là trọng tâm của các tam giác SAD và SBC. Mặt phẳng (ADJ) cắt SB, SC lần lượt tại M, N. Mặt phẳng (BCI) cắt SA, SD lần lượt tại P, Q
a) Chứng minh MN song song với PQ
b) Giả sử Am cắt BP tại E; CQ cắt DN tại F. Chứng minh rằng EF song song với MN và PQ. Tính EF theo a và b ?
Cho tứ diện ABCD. Gọi M, N, P, Q, R và S lần lượt là trung điểm của AB, CD, BC, AD, AC và BD. Chứng minh rằng tứ giác MPNQ là hình bình hành. Từ đó suy ra 3 đoạn thẳng MN, PQ và RS cắt nhau tại trung điểm mỗi đoạn ?
gọi G là trọng tâm của tứ diện ABCD .
a) chứng minh rằng đường thẳng đi qua G và 1 đỉnh của tứ diện sẽ đi qua trọng tâm của mặt đối diện với đỉnh ấy .
b) gọi A' là trọng tâm của mặt BCD . chứng mình rằng GA=3GA' .
gọi G là trọng tâm của tứ diện ABCD .
a) chứng minh rằng đường thẳng đi qua G và 1 đỉnh của tứ diện sẽ đi qua trọng tâm của mặt đối diện với đỉnh ấy .
b) gọi A' là trọng tâm của mặt BCD . chứng mình rằng GA=3GA' .
gọi G là trọng tâm của tứ diện ABCD .
a) chứng minh rằng đường thẳng đi qua G và 1 đỉnh của tứ diện sẽ đi qua trọng tâm của mặt đối diện với đỉnh ấy .
b) gọi A' là trọng tâm của mặt BCD . chứng mình rằng GA=3GA' .
gọi G là trọng tâm của tứ diện ABCD .
a) chứng minh rằng đường thẳng đi qua G và 1 đỉnh của tứ diện sẽ đi qua trọng tâm của mặt đối diện với đỉnh ấy .
b) gọi A' là trọng tâm của mặt BCD . chứng mình rằng GA=3GA' .
gọi G là trọng tâm của tứ diện ABCD .
a) chứng minh rằng đường thẳng đi qua G và 1 đỉnh của tứ diện sẽ đi qua trọng tâm của mặt đối diện với đỉnh ấy .
b) gọi A' là trọng tâm của mặt BCD . chứng mình rằng GA=3GA' .
gọi G là trọng tâm của tứ diện ABCD .
a) chứng minh rằng đường thẳng đi qua G và 1 đỉnh của tứ diện sẽ đi qua trọng tâm của mặt đối diện với đỉnh ấy .
b) gọi A' là trọng tâm của mặt BCD . chứng mình rằng GA=3GA' .
gọi G là trọng tâm của tứ diện ABCD .
a) chứng minh rằng đường thẳng đi qua G và 1 đỉnh của tứ diện sẽ đi qua trọng tâm của mặt đối diện với đỉnh ấy .
b) gọi A' là trọng tâm của mặt BCD . chứng mình rằng GA=3GA' .