Cho tứ diện ABCD. Trên cạnh AD lấy điểm M, trên cạnh BC lấy điểm N bất kì khác B,C. gọi (P) là mặt phẳng đi qua đường thẳng MN và song vs CD .khi đó thiết diện ABCD khi cắt bởi mặt phẳng (P) là hình gì ?
Cho tứ diện ABCD. Trên cạnh AB lấy một điểm M. Cho \(\left(\alpha\right)\) là mặt phẳng qua M song song với hai đường thẳng AC và BD
a) Tìm giao tuyến của \(\left(\alpha\right)\) với các mặt của tứ diện
b) Thiết diện của tứ diện cắt bởi mặt phẳng \(\left(\alpha\right)\) là hình gì ?
Cho tứ diện ABCD. Qua điểm M nằm trên AC ta dựng một mặt phẳng \(\left(\alpha\right)\) song song với AB và CD. Mặt phẳng này lần lượt cắt các cạnh BC, BD và AD tại N, P, Q
a) Tứ giác MNPQ là hình gì ?
b) Gọi O là giao điểm hai đường chéo của tứ giác MNPQ. Tìm tập hợp các điểm O khi M di động trên đoạn AC ?
Cho hình chóp A.ABCD có đáy ABCD là một tứ giác lồi. Gọi là giao điểm của hai đường chéo AC và BD. Xác định thiết diện của hình chóp cắt bởi mặt phẳng \(\left(\alpha\right)\) đi qua O, song song với AB và SC. Thiết diện đó là hình gì ?
cho hình chóp S.ABCD có đáy là 1 tứ giác lồi , O là giao điểm 2 đường chéo AC và BD . xác định thiết diện của hình chóp khi cắt bởi mặt phẳng đi qua O , song song với AB và SC . thiết diện đó là hình gì ?
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AB, AD.
P là điểm trên cạnh BC (P không trùng với điểm B và C) và R là điểm trên cạnh CD sao cho \(\frac{BP}{BC}\)\(\ne\)\(\frac{DR}{DC}\)
a) Xác định giao điểm của PR và mp (ABD)
b) Định điểm P trên cạnh BC để thiết diện của tứ diện với mp (MNP) là hình bình hành
cho hình chóp S.ABCD có đáy là 1 hình bình hành . xác định thiết diện của hình chóp khi cắt bởi mặt phẳng đi qua trung điểm M của cạnh AB , song song với BD và SA
cho hình chóp S.ABCD có đáy là 1 hình bình hành . xác định thiết diện của hình chóp khi cắt bởi mặt phẳng đi qua trung điểm M của cạnh AB , song song với BD và SA
cho hình chóp S.ABCD có đáy là 1 hình bình hành . xác định thiết diện của hình chóp khi cắt bởi mặt phẳng đi qua trung điểm M của cạnh AB , song song với BD và SA