Đặt \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2010.2011}\)
Ta có:
\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2011^2}\)\(< \)\(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2010.2011}\left(1\right)\)
Mà \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2010.2011}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2010}-\frac{1}{2011}\)
\(=1-\frac{1}{2011}< 1\left(2\right)\)
Từ (1) và (2) \(\Rightarrow A< B< 1\Rightarrow A< 1\)
Đpcm