Cho tam giác ABC, điểm M bất kì nằm trong tam giác.
a) So sánh MB + MC với BC.
b) Chứng minh 2(MA + MB + MC) > AB + BC + CA.
c) Gọi I là giao điểm của đường thẳng BM và cạnh AC. So sánh MC và MI + IC, từ đó chứng minh MB + MC < IB + IC
d) So sánh IB và IA + AB, từ đó chứng minh IB + IC < AB + AC
e) Chứng minh MB + MC < AB + AC
f) Chứng minh MA + MB + MC < AB + BC + AC
Cho tam giác ABC, điểm M bất kì nằm trong tam giác.
a) So sánh MB + MC với BC.
b) Chứng minh 2(MA + MB + MC) > AB + BC + CA.
c) Gọi I là giao điểm của đường thẳng BM và cạnh AC. So sánh MC và MI + IC, từ đó chứng minh MB + MC < IB + IC
d) So sánh IB và IA + AB, từ đó chứng minh IB + IC < AB + AC
e) Chứng minh MB + MC < AB + AC
f) Chứng minh MA + MB + MC < AB + BC + AC
Cho tam giác ABC, điểm M bất kì nằm trong tam giác.
a) Gọi I là giao điểm của đường thẳng BM và cạnh AC. So sánh MC và MI + IC, từ đó chứng minh MB + MC < IB + IC
b) So sánh IB và IA + AB, từ đó chứng minh IB + IC < AB + AC
c) Chứng minh MB + MC < AB + AC
d) Chứng minh MA + MB + MC < AB + BC + AC
cho △ ABC và M là 1 điểm bất kì thuộc miền trong của tam giác
a. cmr : MB+ MC< AB+AC
b. áp dụng câu a . cmr \(\dfrac{AB+AC+BC}{2}< MA+MB+MC< AB+AC+BC\)
Cho tam giác ABC. Lấy M là một điểm nằm trong tam giác
a) Chứng minh tổng 3 đoạn thẳng (MA+MB+MC) lớn hơn một nửa chu vi tam giác ABC
b)Lấy E là trung điểm đoạn MC. Vẽ EF vuông góc MC tại E. (F thuộc AC)
Chứng minh FM=FC
c)Chứng minh AC > AM
Vẽ luôn hình giúp mình
Bài 1: Cho tam giác ,điểm M thuộc cạnh AB
a. So sánh : MC vs AM +AC
b. CM: MB +MC <AB+ AC
Bài 2: Cho tam giác điểm bất kỳ nằm trong tam giác
a. So sánh : MB+MCvới BC
b. CM :2(MA +MB +MC)>(AB+BC+CA)
Cho tam giác ABC vuông cân tại A. M là điểm bất kỳ trên BC không trùng với B và C; P, Q là hai điểm bất kỳ trên AB, AC sao cho AP = AQ. Gọi E, F lần lượt là hình chiếu của M trên AB, AC.
a) Tam giác FMC, tam giác MEB là các tam giác gì ?
b) Chứng minh rằng ME = AF; MF = AE.
c) Chứng minh rằng MP + MQ lớn hơn hoặc bằng AB .
d) Xác định vị trí của M để EF đạt giá trị nhỏ nhất.
Cho tam giác ABC và M là một điểm nằm trong tam giác. Gọi I là giao điểm của đường thẳng BM và cạn AC
a) So sánh IB với MI + IA, từ đó chứng minh MA + MB < IB +IA
b) So sánh IB với IC + CB, từ đó chứng minh IB + IA < CA + CB
c) Chứng minh bất đẳng thức MA + MB < CA + CB
(3.0 điểm). Cho tam giác ABC vuông tại A, có AB = 3cm, BC = 5cm. a) Tính độ dài AC ? b) Gọi M là trung điểm của AC, Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh rằng: ABM = CDM. Từ đó suy ra AB = CD. c) Chứng minh 2.BM < AB + BC.