Cho tam giác ABC có \(\widehat{BAC}=60^0;AB=4;AC=6\)
a) Tính tích vô hướng \(\overrightarrow{AB}.\overrightarrow{AC};\overrightarrow{AB}.\overrightarrow{BC}\), độ dài cạnh BC và bán kính R của đường tròn ngoại tiếp tam giác ABC
b) Lấy các điểm M, N định bởi : \(2\overrightarrow{AM}+3\overrightarrow{MC}=\overrightarrow{0};\overrightarrow{NB}+x\overrightarrow{BC}=\overrightarrow{0};\left(x\ne-1\right)\). Định \(x\) để AN vuông góc với BM ?
Cho hình vuông ABCD có cạnh bằng 3a, tâm O; E là điểm trên cạnh BC và BE =a
a) Tính cạnh OE và bán kính đường tròn ngoại tiếp tam giác OBE
b) Gọi G là trọng tâm tam giác ACD. Tính tích vô hướng : \(\overrightarrow{GA}.\overrightarrow{GC}\)
giúp mk 2 bài này với m.n ơi, 2 bài tự luận để mk ôn thi ak
Bài 1/ Cho hình vuông ABCD cạnh a, tâm O. Hãy tính:
a/ \(\overrightarrow{AB}.\overrightarrow{BC}\) ; \(\overrightarrow{AB}.\overrightarrow{BD}\) ; ( \(\overrightarrow{AB}+\overrightarrow{AD}\) )(\(\overrightarrow{BD}+\overrightarrow{BC}\)) ;
(\(\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}\))(\(\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{DC}\)).
b/ \(\overrightarrow{ON}.\overrightarrow{AB}\) ; \(\overrightarrow{NA}.\overrightarrow{AB}\) với N là điểm cạnh BC.
c/ \(\overrightarrow{MA}.\overrightarrow{MB}\) \(+\overrightarrow{MC}.\overrightarrow{MD}\) với M nằm trên đường nội tiếp hình vuông.
Bài 2/ Cho tam giác ABC, tìm tập hợp những điểm M thỏa mãn điều kiện sau:
a/ \(\overrightarrow{MA}.\overrightarrow{MB}=\overrightarrow{MA}.\overrightarrow{MC}\)
b/ (\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\))(\(\overrightarrow{AC}-\overrightarrow{AB}\) ) = \(AB^2\)
c/ (\(\overrightarrow{MB}+\overrightarrow{MC}\))(\(\overrightarrow{MA}+2\overrightarrow{MB}+3\overrightarrow{MC}\))=0
M.N cứu mk với, mk sắp thì r cứu mk, THANK YOU VERY MUCH
Ba điểm A, B, C phân biệt tạo nên vectơ \(\overrightarrow{AB}+\overrightarrow{AC}\) vuông góc với vectơ \(\overrightarrow{AB}+\overrightarrow{CA}\). Vậy tam giác ABC là tam giác gì ?
Cho tam giác ABC thỏa mãn điều kiện \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\left|\overrightarrow{AB}-\overrightarrow{AC}\right|\)
Vậy tam giác ABC là tam giác gì ?
Cho tam giác ABC với AC = 13 cm, AB = 7 cm, BC = 15 cm. Tính B, bán kính đường tròn ngoại tiếp tam giác ABC và độ dài đường cao BH.
Trong mặt phẳng Oxy cho vectơ \(\overrightarrow{a}=\left(-3;1\right)\) và vectơ \(\overrightarrow{b}=\left(2;2\right)\). Hãy tính tích vô hướng \(\overrightarrow{a}.\overrightarrow{b}\) ?
Cho tam giác ABC có BC = a, CA = b, AB = c
a) Chứng minh rằng : \(\overrightarrow{AB}.\overrightarrow{AC}=\dfrac{b^2+c^2-a^2}{2}\)
b) Chứng minh rằng : \(\overrightarrow{AB}.\overrightarrow{AC}=AI^2-\dfrac{BC^2}{4}\) với I là trung điểm của BC
c) Gọi G là trọng tâm của tam giác ABC, với M là điểm bất kì trong mặt phẳng, chứng minh hệ thức sau ;
\(MA^2+MB^2+MC^2=GA^2+GB^2+GC^2+3MG^2\)
Nhắc lại định nghĩa tích vô hướng của hai vectơ \(\overrightarrow{a}\) và \(\overrightarrow{b}\). Tích vô hướng này với \(\left|\overrightarrow{a}\right|\) và \(\left|\overrightarrow{b}\right|\) không đổi đạt giá trị lớn nhất và nhỏ nhất khi nào ?