Cho tam giác ABC cân tại a kẻ BH vuông góc với AC ck vuông góc với AB H thuộc AC K thuộc AB Chứng minh tam giác akh là tam giác cân Gọi I là giao điểm của AH và ckAI cắt BC tại MCChứng minh rằng im là phân giác của byc Chứng minh HK song song với BC
cho tam giác abc vuông tại a đường phân giác bk (k thuộc ac). kẻ ki vuông góc với bc i thuộc bc A chung minh abk=ibkB kẻ đường cao ah cua abc chung minh ai la tia pg cua hac C lấy điểm M thuộc tia AH sao cho AM=AC chứng minh IM vuông góc AC
Cho tam giác ABC có AB = AC, kẻ BD vuông góc với AC, CE vuông góc với AB (D thuộc AC, E thuộc AB)
a) Chứng minh: BD=CE
b) Gọi O là giao điểm của BD và CE. Chứng minh tam giác OBE = tam giác OCD
c) Chứng minh AO là tia phân giác của góc BAC và AO vuông góc với BC
Cho tam giác ABC (AB nhỏ hơn AC ). Trên tia AB lấy D sao cho AD=AC . kẻ Phân giác AM của GÓC BAC (M thuộc DC ). a) CM DK= CK b) kẻ BH vuông góc với DC (H thuộc BC ) CM HB// AM
Cho tam giác ABC vuông tại A ( AB > AC) . Tia phân giác góc B cắt AC ở D. Kẻ DH vuông góc với BC. Trên tia AC lấy điểm E sao cho AE = AB . Đường thẳng vuông góc với AE tại E cắt tia DH ở K . Chứng minh rằng :
a)BA = BH
b)\(\widehat{DBK}=45^O\)
c)Cho AB = 4 cm, tính chu vi tam giác DEK
Cho tam giác ABC vuông tại C biết AB = 13 cm AC = 5 cm. Tia phân giác của góc A cắt cạnh BC tại E. kẻ EK vuông góc với AB tại K a, Tính BC. Chứng minh tam giác ACE bằng tam giác AKE b, so sánh CE và BE c, Kẻ CH vuông góc với AB tại H. Chứng mình CK là tia phân giác của góc HCB Cho mình câu trả lời nhanh với ạ
Cho tam ABC cân tại A , có góc BAC = 90 độ . Gọi M , N lần lượt là trung điểm của các đoạn AB , AC . Kẻ NH vuông góc với CM tại H , AK vuông góc với CM tại K .
a, Chứng minh : tam giác CHN = tam giác AKM và tam giác CHA = tam giác AKB
b, Chứng minh : tam giác ABH cân tại B
c, Kẻ HE vuông góc với AB tại E chưng minh : Hm là phân giác góc BHE
Mọi người ơi giúp mik bài này vs , mik cảm ơn nhìu nhaa
cho tam giác ABC có 3 góc nhọn. và AB<AC
kẻ BE vuông góc với Ac tại E, CF vuông góc với AB tại F, BE cắt CF tại H
kẻ HQ song song với AC, HP song song với AB ( Q thuộc AB, P thuộc AC)
a) cm: Tam giác AHQ=tam giác HAP
b) cho M là trung điểm của BC.
cm: tam giác MEF cân và góc AEF=góc ABC
c) cm: HA+HB+HC<2/3(AB+AC+BC)
Cho tam giác ABC cân tại A (BAC <90°), Kẻ BI vuông góc với AC tại 1. Trên cạnh BC lấy điểm M bất kỳ (M khác B và C). Gọi D, E, F lần lượt là chân đường vuông góc kẻ từ M đến các cạnh AB, AC, BI. 1) Chứng minh rằng tam giác DBM = tam giác FMB. 2) Cho BC = 10cm, CI = 6cm. Tính tổng MD + ME. 3) Trên tia đối của tia CA lấy điểm K sao cho CK = EI. Chứng minh BC đi qua trung điểm của đoạn thẳng DK.