1. Cho tam giác nhọn ABC hai đường cao BD và CE cắt nhau tại H. M ∈ HB, N ∈ HC sao cho \(\widehat{AMC}=\widehat{ANB}=90^o\). CMR AN=AM
Cho đường tròn (O) đường kính AB, M là điểm tùy ý thuộc (O) (M không trùng A và B). Trên tia MB lấy điểm N sao cho MA = MN. Vẽ hình vuông AMNP, tia MP cắt (O) tại C. a) Chứng minh C là tâm đường tròn ngoại tiếp tam giác ANB
tam giác ABC có diện tích =120 cm^2, trên đoạn BC lấy M sao cho CM=2BM, trên đoạn AC lấy N sao cho AN=3CN, trên AB lấy P sao cho PA=PB. Diện tích của tam giác có 3 đỉnh là giao 3 đoạn thẳng AM,BN,CP là
cho đoạn thẳng không đổi BC. trên BC lấy điểm H qua điểm H kẻ tia Hx vuông góc với BC. trên tia Hx lấy điểm A sao cho \(B\widehat{A}C=90^0\). từ H kẻ HD vuông góc AB (D thuộc AB),kẻ HE vuông góc AC (E thuộc AC)
a.chứng minh AD.BD.AC\(^2=AH^2\)
b.qua D,E lần lượt kẻ đường thẳng vuông góc DE cắt BC lần lượt ở M và N. xác định vị trí của H để diện tích tứ giác DENM có diện tích lớn nhau
cho đoạn thẳng không đổi BC. trên BC lấy điểm H qua điểm H kẻ tia Hx vuông góc với BC. trên tia Hx lấy điểm A sao cho \(B\widehat{A}C=90^0\). từ H kẻ HD vuông góc AB (D thuộc AB),kẻ HE vuông góc AC (E thuộc AC)
a.chứng minh AD.BD.\(AC^2=AH^2\)
b.qua D,E lần lượt kẻ đường thẳng vuông góc DE cắt BC lần lượt ở M và N. xác định vị trí của H để diện tích tứ giác DENM có diện tích lớn nhau
cho đoạn thẳng không đổi BC. trên BC lấy điểm H qua điểm H kẻ tia Hx vuông góc với BC. trên tia Hx lấy điểm A sao cho \(B\widehat{A}C=90^0\). từ H kẻ HD vuông góc AB (D thuộc AB),kẻ HE vuông góc AC (E thuộc AC)
a.chứng minh AD.BD.\(AC^2=AH^2\)
b.qua D,E lần lượt kẻ đường thẳng vuông góc DE cắt BC lần lượt ở M và N. xác định vị trí của H để diện tích tứ giác DENM có diện tích lớn nhau
cho đoạn thẳng không đổi BC. trên BC lấy điểm H qua điểm H kẻ tia Hx vuông góc với BC. trên tia Hx lấy điểm A sao cho \(B\widehat{A}C=90^0\). từ H kẻ HD vuông góc AB (D thuộc AB),kẻ HE vuông góc AC (E thuộc AC)
a.chứng minh AD.BD.\(AC^2=AH^4\)
b.qua D,E lần lượt kẻ đường thẳng vuông góc DE cắt BC lần lượt ở M và N. xác định vị trí của H để diện tích tứ giác DENM có diện tích lớn nhau
Cho tam giác ABC nhọn .Đường tròn (O) đường kính AC cắt AB , :BC lần lượt tại M và N . a, Chứng minh : Các tam giác AMC và ANC là các tam giác vuông ; b, Chứng minh : BM.BA=BN.BC ; c, Trên các cạnh AN ,CM lần lượt lấy các điểm H và K sao cho góc BHC và góc BKA = 90 độ .Chứng minh BH=BK
cho tam giác ABCvuông tai A đường cao AH chia cạnh huyền BC thành 2 đoạn BH=3,6cn và
HC= 6,4cm trên cạnh AC lấy điểm M (M≠A,M≠C) kẻ AD vuông góc với MB tại D
1,TÍNH AB . AC .GÓC B .GÓC C(làm tròn đến phút)
2 cm BD*BM=BH*BC
3 CM 4 điểm A B C D cùng thuộc 1 đường tròn. CM AC là tiếp tuyến của đường tròn đó