Cho tam giác DEF biết DE = 6 cm, DF = 8 cm, EF = 10cm.
a) Cmr : Tam giác DEF là tam giác vuông
b) Vẽ DK là đường cao. Tính DK và FK
c) Giải tam giác EDK
d) Vẽ phân giác trong EM của góc DEF. Tính MD, MF, ME.
e) Tính sin F trong các tam giác vuông DFK và DEF. Từ đó suy ra : ED . DF = DK . EF
Cho ∆DEF vuông tại D, đường cao DH. Biết EH=9 cm, HF=16 cm
a. Tính DH, DE, DF, góc F
b. Trên tia đối của tia DE lấy điểm I sao cho góc DFI = 30° (Vẽ đúng số đo). Tính DI, IF
c. Vẽ DK là phân giác góc HDK (K thuộc EF) M là hình chiếu của F lên DK. Chứng minh: 1/FM^2 = 1/FD^2 + 1/FK^2
Giúp mình câu c với ạ, lm hoài mà ko ra 😭😭😭😭😭
Cho tam giác ABC vuông ở A, AB = 6cm, AC = 8cm
a) Tính \(BC,\widehat{B},\widehat{C}\)
b) Phân giác của góc A cắt BC tại D. Tính BD, CD
c) Từ D kẻ DE và DF lần lượt vuông góc với AB và AC. Tứ giác AEDF là hình gì ? Tính chu vi và diện tích của tứ giác AEDF
Cho tam giác DEF vuông tại D, đường cao DH. Biết DE = 9 cm, DF = 12 cm a) Tính tỷ số lượng giác của góc E b) Tính độ dài DH
Cho tam giác ABC vuông tại A, đường cao AH chia cạnh huyền BC thành hai đoạn BH, CH có độ dài lần lượt là 4cm, 9cm. Gọi D và E lần lượt là hình chiếu của H trên AB và AC
a) Tính độ dài đoạn thẳng DE
b) Các đường thẳng vuông góc với DE tại D và tại E lần lượt cắt BC tại M và N. Chứng minh M là trung điểm của BH và N là trung điểm của CH
c) Tính diện tích tứ giác DENM
Cho tam giác MNP vuông tại M (MN-MP), đường cao MH. Gọi D và E lần lượt là hình chiếu của H trên MN và MP. 2/ Chứng minh: MD.MN =ME, MP MN² b/ Chứng minh: MP4 PH và chứng minh MH = NPNDPE NH có Qua M kẻ đường vuông góc với DE cắt NP tại K. Chứng minh Kỉ là trung điểm Nh d/ Cho góc P=a; NP = a. Từ M kẻ đường vuông góc với MK cắt tia PN tại I. Chứng minh PI a.(cos 2a+1) 2cos 2a
\(Cho tam giác CDE vuông tại C, đường cao CH. Kẻ HA vuông góc với CD, HB vuông góc với CE. Biết CH=9cm, DH= 4 cm a) tính AB,HE, góc D b) chứng minh CA.CD=CB.CE c) Kẻ AM và BN vuông góc với AB. Chứng minh M,N lần lượt là trung điểm của DH và HE d) Tính diện tích tứ giác ABNM\)
Cho tam giác nhọn ABC có đường cao AH. Từ H kẻ HE vuông góc với AB, HF vuông góc với AC (E thuộc AB, F thuộc AC).
a) Chứng minh: \(\widehat{AFE}=\widehat{ABC}\)
b) Đường thẳng EF cắt BC tại M. Chứng minh: ME . MF = MB . MC.
c) Cho biết AC= 10 cm, \(\widehat{BAC=60^o}\), \(\widehat{ABC}=80^o\) . Tính độ dài đoạn vuông góc hạ từ A xuống EF.
Cho tam giác ABC, AB=5cm,AC=12cm,BC=13cm. AH là đường cao tam giác ABC và AH vuông góc với BC
a, Chứng minh: Tam giác ABC là tam giác vuông và tính AH
b, Kẻ HE vuông góc với AB tại E và HF vuông góc với AC tại F. Chứng minh: AE.AB=AF.AC
c, Tam giác AEF đồng dạng tam giác ABC
d,\(\dfrac{EB}{FC}=(\dfrac{AB}{AC})^{3}\)
e, BC.BE.CF=\(AH^{3}\)