Cho tam giác ABC có 3 góc nhọn. Trên đường cao AH của tam giác ABC lấy điểm M (M nằm giữa A và H). Tia BM cắt AC tại I, tia CM cắt AB tại K. Chứng minh HA là tia phân giác của \(\widehat{KHI}\)
Cho tam giác ABC có 3 góc nhọn. Trên đường cao AH của tam giác ABC lấy điểm M (M nằm giữa A và H). Tia BM cắt AC tại I, tia CM cắt AB tại K. Chứng minh HA là tia phân giác của \(\widehat{KHI}\)
Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD,BC. Chứng minh rằng: \(\widehat{BAC}=2\widehat{BMN}\)
Cho tam giác ABC, M thuộc AC sao cho AM=MC=1/3. Lấy điểm O trên BM sao cho OM/OB=2/3. Nối A với O cắt BC tại N.
a) Tính các tỉ số CN/NB và AO/ON.
b) Xác định vị trí của điểm P trên AB sao cho BM, AN, CP đồng quy
Cho tam giác ABC có AB<AC, D nằm giữa A và C sao cho: \(\widehat{ABD}=\widehat{ACB}\). Phân giác của góc A cắt BC tại E, BD tại F. Qua A kẻ đường thẳng vuông góc với AE cắt BC tại M. CM: MB.EC=MC.EB
Cho tam giác ABC, M thuộc AC sao cho AM=MC=1/3. Lấy điểm O trên BM sao cho OM/OB=2/3. Nối A với O cắt BC tại N.
a) Tính các tỉ số CN/NB và AO/ON.
b) Xác định vị trí của điểm P trên AB sao cho BM, AN, CP đồng quy
Cho \(\Delta\)ABC vuông tại A, đường cao AH. Biết BH = 9cm, BC = 25cm. Kẻ AK là phân giác \(\widehat{CAH}\) .
a, \(\Delta\) HBA \(\sim\) \(\Delta\) ABC
b, Tính AB, CK, HK
c, Trên AC lấy E sao cho CE= 5cm , trên BC lấy F sao cho CF = 4cm. Chứng minh: CEF vuông
Cho tam giác ABC có 3 góc nhọn đường cao AH. Trên cạnh AC lấy điểm M, trên cạnh AB lấy điểm N sao cho HA là tia phân giác của góc MHN. CM: 3 đường BM, CN,AH đồng quy
cho tam giác ABC vuông tại A. Từ một điểm D bất kì trên cạnh BC kẻ \(DE\perp AC\) tại E: \(DF\perp AB\) tại F
A) chứng mình rằng tứ giác AEDF là hình chữ nhật
B)trên tia đối của tia AB lấy điểm G sao cho AG=AF. Gọi H là giao điểm của AE vad DG. Chúng minh rằng FH là đường trung tuyến của tam giác FDG