Tự vẽ hình.
Xét tam giác ABC có :
^BAC = 90° => ^BAD = 90° - ^DAC (1)
Do AH \(\perp\) BC => ^BDA = 90° - ^HAD (2)
Mặt khác : AD là tia phân giác của ^HAC
=> ^DAC = ^HAC (3)
Từ (1), (2) và (3) => ^BAD = ^BDA
— Tính ^DAC
Xét tam giác AHC có :
^C + ^HAC + ^AHC = 180° ( theo tính chất tổng 3 góc trong 1 tam giác )
Hay 40° + ^HAC + 90° = 180°
=> ^HAC = 180° - 90° - 40°
^HAC = 50°
Mà AD là tia phân giác của ^HAC
=> ^DAC = ^HAD = 1/2 . ^HAC = 1/2 . 50° = 25°
Vậy ^DAC = 25° (ĐPCM)
— Tính ^BDA
Ta có ^BDA = ^DAC + ^C ( theo định lí góc ngoài tam giác )
Hay ^BDA = 25° + 40°
^BDA = 65°
— Tính ^B
Ta có ^A + ^B + ^C = 180° ( theo định lí tổng 3 góc trong 1 tam giác )
Hay 90° + ^B + 40° = 180°
=> ^B = 180° - (40° + 90°)
^B = 180° - 130°
^B = 50°
Vậy ^BDA = 65°
^B = 50°
^DAC = 25°