Cho tam giác ABC vuông tại A, có BC=a không đổi. Kẻ đường cao AH. Gọi E, F lần lượt là hình chiếu của H lên các cạnh AB và AC
a) Cm tứ giác AEHF là hình chữ nhật
b) Gọi M là trung điểm của BH. CM:
c) Gọi N là trung điểm của CH. Tứ giác MEFN là hình gì? Hãy chứng minh
d) Tìm điều kiện của tam giác vuông ABC để EF có độ dài lớn nhất
Cho tam giác ABC vuông tại A, có BC=a không đổi. Kẻ đường cao AH. Gọi E, F lần lượt là hình chiếu của H lên các cạnh AB và AC
a) Cm tứ giác AEHF là hình chữ nhật
b) Gọi M là trung điểm của BH. CM: \(\widehat{MEF}\)
c) Gọi N là trung điểm của CH. Tứ giác MEFN là hình gì? Hãy chứng minh
d) Tìm điều kiện của tam giác vuông ABC để EF có độ dài lớn nhất
Cho tam giác ABC vuông tại A, có BC=a không đổi. Kẻ đường cao AH. Gọi E, F lần lượt là hình chiếu của H lên các cạnh AB và AC
a) Cm tứ giác AEHF là hình chữ nhật
b) Gọi M là trung điểm của BH. CM: \(\widehat{MEF}=90\) độ
c) Gọi N là trung điểm của CH. Tứ giác MEFN là hình gì? Hãy chứng minh
d) Tìm điều kiện của tam giác vuông ABC để EF có độ dài lớn nhất
Cho tam giác ABC vuông tại A, đường cao AH, phân giác BI. Qua C kẻ đường thẳng vuông góc với BI tại D. Gọi E là giao điểm của AB và CD. Gọi F là hình chiếu của D trên BE. Chứng minh: (BD/DE)^2=BF/EF
cho tam giác ABC đường cao AH
a) c/m : △ABC đồng dạng với △HBA
b) gọi M ,N lần lượt là trung điểm của AB và BC .đường thẳng d vuông vs BC tại D cắt MN tại I .c/m :IB2 =IM . IN
c) gọi E là giao điểm của IC và EH .c/m : E là trung điểm của AH
Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC). Gọi D, E lần lượt là hình chiếu của H trên AB, AC và O, M, N lần lượt là trung điểm của AH, BH, CH.
a) CM: DM song song với EN và BH.AN=BO.AH
b) Gọi I là trực tâm của tam giác AMN. CM: Diện tích tứ giác BMIO gấp 3 lần diện tích tam giác MHI.
c) Giả sử khoảng cách từ điểm A đến cạnh BC không đổi thì tam giác ABC phải thỏa mãn điều kiện gì để diện tích tam giác AMN nhỏ nhất?
Cho tam giác ABC vuông ở A, đường cao AH. Gọi I và K lần lượt là hình chiếu vuông góc của H lên các cạnh AB và AC. Gọi O là giao điểm của Ah và IK. Hạ KD vuông góc với BC tại D. CM: Ba đường thẳng AD, CO và HK đồng quy
Cho tam giác ABC vuông ở A, đường cao AH. Gọi I và K lần lượt là hình chiếu vuông góc của H lên các cạnh AB và AC. Gọi O là giao điểm của Ah và IK. Hạ KD vuông góc với BC tại D. CM: Ba đường thẳng AD, CO và HK đồng quy
Cho tam giác ABC vuông ở A, đường cao AH. Gọi I và K lần lượt là hình chiếu vuông góc của H lên các cạnh AB và AC. Gọi O là giao điểm của Ah và IK. Hạ KD vuông góc với BC tại D. CM: Ba đường thẳng AD, CO và HK đồng quy