Ôn tập Hệ thức lượng trong tam giác vuông

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Anh Khương Vũ Phương

Cho tam giác ABC vuông tại A, đường cao AH. Gọi D là điểm đối xứng với A qua B. Gọi E là điểm thuộc tia đối của tia HA sao cho HE = 2HA. CMR: \(\widehat{DEC=90^o}\)

Phương An
14 tháng 7 2017 lúc 17:00

Kẻ DI _I_ AE.

BH // DI (BH _I_ AE và DI _I_ AE)

B là trung điểm của AD (D đối xứng A qua B)

=> H là trung điểm của AI

=> BH là đường trung bình của \(\Delta ADI\) và AH = HI = IE

\(\Rightarrow DI=2BH\)

Áp dụng hệ thức lượng trong \(\Delta ABC\) vuông tại A:

AH2 = BH . CH

\(\Rightarrow\dfrac{AH}{BH}=\dfrac{CH}{AH}\)

\(\dfrac{ID}{IE}=\dfrac{2BH}{AH}\) ; \(\dfrac{HE}{HC}=\dfrac{2AH}{HC}\)

\(\Rightarrow\dfrac{ID}{IE}=\dfrac{HE}{HC}\)

=> \(\Delta IDE~\Delta HEC\left(c.g.c\right)\)

\(\Rightarrow\widehat{IED}=\widehat{HCE}\)

\(\Rightarrow\widehat{DEC}=\widehat{IED}+\widehat{HEC}=\widehat{HCE}+\widehat{HEC}=90^0\left(\text{đ}pcm\right)\)