\(\Delta ABC:\) \(\widehat{A}=90^o\)
\(\Rightarrow\) \(AB^2+AC^2=BC^2\) ( Định lý Py - ta - go )
\(\Rightarrow\) \(AC^2=BC^2-AB^2=10^2-6^2=64\)
\(\Rightarrow\) \(AC=8\left(cm\right)\)
Xét \(\Delta AHB\) và \(\Delta CAB\) có :
\(\widehat{AHB}=\widehat{CAB}=90^o\)
\(\widehat{B}:chung\)
\(\Rightarrow\) \(\Delta AHB\sim\Delta CAB\left(g.g\right)\)
\(\Rightarrow\) \(\frac{AH}{AB}=\frac{AC}{BC}\) \(\Rightarrow\) \(AH=\frac{AB.AC}{BC}=\frac{6.8}{10}=4,8\left(cm\right)\)