Hình học lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bùi Hiền Thảo

Cho tam giác ABC vuông góc tại A. Gọi d là đường thẳng đi qua C và vuông góc với BC. Tia phân giác của góc B cắt AC ở D và cắt d ở E. Kẻ CH vuông góc với DE (\(H\in DE\)). Chứng minh CH là tia phân giác của góc DCE.

soyeon_Tiểubàng giải
30 tháng 10 2016 lúc 21:33

Ta có hình vẽ:

A B C D H E d

Vì BD là phân giác của ABC nên \(ABD=CBD=\frac{ABC}{2}\)

Vì ABC vuông góc tại A nên góc A = 90o

Xét Δ ABC có: ABC + ACB = 90o (tính chất của Δ vuông)

=> ABC = 90o - ACB

=> \(\frac{ABC}{2}=\frac{90^o-ACB}{2}\)

=> CBD = 45o - \(\frac{ACB}{2}\)

\(CH\perp DE\) nên CHD = 90o

Xét Δ BHC có: HBC + BCH = 90o (tính chất của Δ vuông)

=> 45o - \(\frac{ACB}{2}\) + BCH = 90o

=> BCH - \(\frac{ACB}{2}\) = 45o

=> BCH - \(\frac{ACB}{2}\) = \(\frac{BCE}{2}\) (vì BCE = 90o)

=> BCH \(=\frac{BCE+ACB}{2}=\frac{2.ACB+DCE}{2}=ACB+\frac{DCE}{2}\)

=> BCH - ACB = \(\frac{DCE}{2}\)

=> \(DCH=\frac{DCE}{2}\)

=> CH là tia phân giác của góc DCE (đpcm)

Nam Vu Gia
28 tháng 10 2018 lúc 21:46

Xét tam giác ABD và tam giác HCD, ta có:

BAC=CHD

ABD+ADB=90

DCH+HDC=90

Mà ADB=HDC⇒ABD=DCH (1)

⇒Tam giác ABD=tam giác HCD

⇒ABD=DCH

Xét tam giác BCE và tam giác HCE, ta có:

C=H

DBC+BEC=90

HCE+BEC=90

⇒Tam giác BCE= tam giác HCE

⇒DBC=HCE (2)

BD la phân giác của ABC

⇒ABD=DBC (3)

Từ (1) (2) (3) ⇒ DCH=HCE

⇒CH là tia phân giác của góc DCE(đpcm)


Các câu hỏi tương tự
Jeon Jungkook Bangtan
Xem chi tiết
lequangha
Xem chi tiết
Phạm Nguyễn Thanh Tâm
Xem chi tiết
Nguyễn Hà Phương
Xem chi tiết
Lô Vỹ Vy Vy
Xem chi tiết
Nguyễn Hà Phương
Xem chi tiết
Hà Hương Linh
Xem chi tiết
Mai Shiro
Xem chi tiết
Nguyễn Thủy Nhi
Xem chi tiết