Hình học lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Miko

Cho tam giác ABC . Vẽ về phía ngoài tam giác ABC , các tam giác vuông tại A là ABD, ACE có AB = AD , AC = AE. Kẻ AH vuông với BC, DM vuông góc với AH, EN vuông góc với AH. chứng minh rằng :

a) DM = AH

b) MN đi qua trung ddiểm của DE

trần thị xuân mai
6 tháng 12 2016 lúc 21:15

Hình học lớp 7a) Ta có :

Góc A2 + A3 + A1 = 189' ( bù nhau )

mà góc A3 = 90'

---> góc A2 + góc A1 = 180 - 90' = 90'

Vì góc DMA = góc AHB = 90'

--->góc D2 + góc A2 = 190' - góc DMA

--->góc D2 + góc A2 = 90'

---> góc A1 + góc B1 = 90'

--->góc D1 = góc A1; góc A2 = góc B1

xét hai tam giác vuông AMD và AHB có :

góc DMA = góc AHB ( vuông góc )

AD = AB ( GT )

góc A2 = góc B1 ( CMT )\

--->ΔDMA = ΔAHB ( cạnh huyền - góc nhọn )

---> DM = AH ( hai cạnh tương ứng)

b) Gọi M là giao điểm của MN và DE

Xét ΔANE và ΔCHA có :

( chứng minh như câu a)

---> EN = AH

Xét hai tam giác vuông IEN và IMD có :

góc I1 = góc I2 ( đối đỉnh )

EN = AH ( ΔANE = ΔCHA)

DM = AH ( CMT )

vì Tổng 3 góc tam giác = 180'

mà góc I1 = góc I2 ;

Góc M = góc N

---> ΔIMD = ΔENI ( cạnh huyền - góc nhọn)

---> DI = IE ( hai cạnh tương ứng 0

---> MN đi qua trung điểm của DE

  

 


Các câu hỏi tương tự
Thánh Lầy
Xem chi tiết
Nguyễn Hương Giang
Xem chi tiết
Linh Trần Diệu
Xem chi tiết
Nyoko Satoh
Xem chi tiết
Lô Vỹ Vy Vy
Xem chi tiết
Kỵ Sĩ Sân Cỏ
Xem chi tiết
Kirigawa Kazuto
Xem chi tiết
nguyễn thị mi
Xem chi tiết
Dang Vu Huyen My
Xem chi tiết