a) Xét \(\Delta\)ABH và \(\Delta\)DBH có:
AH = DH (gt)
\(\widehat{AHB}\) = \(\widehat{DHB}\) (= 90o)
BH chung
=> \(\Delta\)ABH = \(\Delta\)DBH (c.g.c)
b) Xét \(\Delta\)ACH và \(\Delta\)DCH có:
AH = DH (gt)
\(\widehat{AHC}\) = \(\widehat{DHC}\) (= 90o)
CH chung
=> \(\Delta\)ACH = \(\Delta\)DCH (c.g.c)
=> AC = DC (2 cạnh tương ứng)
c) Vì AE // BD nên \(\widehat{EAH}\) = \(\widehat{HDB}\) (so le trong)
Xét \(\Delta\)AHE và \(\Delta\)DHB có:
\(\widehat{AHE}\) = \(\widehat{DHB}\) (= 90o)
AH = DH (gt)
\(\widehat{EAH}\) = \(\widehat{HDB}\)
=> \(\Delta\)AHE = \(\Delta\)DHB (g.c.g)
=> \(\widehat{HAE}\) = \(\widehat{HDB}\) (2 góc t ư)
mà \(\widehat{BAH}\) = \(\widehat{HDB}\) ( \(\Delta\)ABH = \(\Delta\)DBH)
nên \(\widehat{BAH}\) = \(\widehat{HAE}\)
Xét \(\Delta\)BAH và \(\Delta\)EAH có:
\(\widehat{BHA}\) = \(\widehat{EHA}\) (= 90o)
AH chung
\(\widehat{BAH}\) = \(\widehat{EAH}\) (cm trên)
=> ..........
=> BH = EH (2 cạnh t ư)
Do đó H là tđ của BE.