Cho tam giác ABC. Trên tia đối của BC và CB lần lượt lấy D và E sao cho BD=AB , CE=AC . Tpg Bx của góc ABD cắt AD tại M , tpg Cy của góc ACI cắt AE taijN . C/m MN//BD và MN = 1/2 chu vi tam giác ABC
Tam giác ABC, D thuộc tia đối của BC, E thuộc tia đối của CB, BD= CE. Phân giác Bx cắt AD tại N.
C/m: MN // BC, MN = 1/2 chu vi ABC
Cho tam giác ABC, D thuộc tia đói BC sao cho BA=BD, E thuộc tia đối CB sao cho CE=CA.BH vuông góc với AD, CK vuông góc với AE. HK cắt AB tại M, cắt AC tại N.C/m: a.HK//BC,b. HK= 1 nửa chu vi tam giác ABC
BÀI 1: Cho tam giác ABC. Trên các cạnh AB và AC lấy các điểm D và E sao cho AD = 1/4AB; AE=1/2AC. DE cắt đường thẳng BC tại F. CM: CF = 1/2BC BÀI 2: Cho tam giác ABC. Điểm D thuộc tia đối của tia BA sao cho BD=BA, điểm M là trung điểm của BC. Gọi K là giao điểm của DM và AC. CM: AK = 2KC Help me! Mình đang cần gấp ạ.!!!
Bài 1: Cho tam giác ABC vuông cân tại C. Trên AC, CB lấy lần lượt điểm D,E sao cho CD=CE. Từ D,C hạ vuông góc với AE. Các đường vuông góc này cắt AB thứ tự là K,L. C/m: KL=KB.
Bài 2: Cho tứ giác ABCD,M và N lần lượt là trung điểm của AB và CD, biết: AD cắt MN tại E, BC cắt MN tại F. Với điều kiện nào của tứ giác thì ABCD có: góc AEM=FEM
Bài 3: Cho tam giác ABC có 3 góc nhọn, các đường cao CH, BK. Gọi D Và E lần lượt là hình chiếu của B và C trên đường thẳng HK. C/m: DK=EH.
Cho tam giác ABC, trên AB lấy D, trên AC lấy E. Gọi MN lần lượt là trung điểm của BE,CD. MN cắt AB,AC lần lượt tại P,Q. Hỏi góc D và góc E phải có điều kiện gì để tam giác APQ cân tại A?
Cho tam giác ABC có H là trực tâm, M là trung điểm của BC. Qua H kẻ đường thẳng vuông góc với HM cắt AB và AC tại E và F, trên tia đối của tia HC lấy HD = HC. Chứng minh rằng:
1) HM // BD 2) E là trực tâm của tam giác HBD
3) DE // AC 4) EH = HF
Cho tam giác ABC cân tại A. Lấy điểm M trên cạnh AB, điểm N trên cạnh AC sao cho AM = CN. Gọi I là trung điểm của MN. Đường thẳng qua I song song với BC cắt AB, AC lần lượt tai D, E. Chứng minh rằng DE là đường trung bình của tam giác ABC.
Cho tam giác ABC. Gọi N và M lần lượt là trung điểm của AB và AC. Trên tia đối của tia MC lấy điểm D, trên tia đối của tia NB lấy điểm E sao cho MD=MC, NE=NB. C/m:
a) D, A, E thẳng hàng
b) MNED là hình thang và MN=1/4 ED