Cho tam giác ABC nhọn nội tiếp (O) đường cao AK, trực tâm H.
a, CM: AK.HK = KB.KC.
b, Kẻ AD là đường kính. CM tứ giác ABCD là hình bình hành.
c, Kẻ OM vuông góc BC. CM: AH = 2MO.
cho tam giác abc nhọn nối tiếp đường tròn o đường cao BD , CE cắt nhau tại H . AH cắt đường tròn tâm O tại K cắt BC tại M
a, cm Tứ giác BEDC nội tiếp
b, cm AE.AB=AD.AC và DH là phân giác góc EDM
c, KD cắt ( O ) tại Q . cm tam giác HMD ~ tam giac EBD , BQ đi qua trung điểm của DE
Cho tam giác ABC nhọn, có AB<AC. vẽ đường cao AD, đường phân giác AO của tam giác ABC, vẽ (O) tiếp xúc với AB,AC lần lượt ở M,N. a)cm:M,N,O,D,A cùng thuộc 1 đ tròn. b)CM: góc BMD =góc CDN. c) qua O kẻ đường thẳng vuông góc với BC cắt MN ở I. AI cắt BC ở K. cm: K là trung điểm của BC.
Cho tam giác nhọn \(ABC\) (AB<AC) nội tiếp đường tròn (O), trực tâm H, đường cao AE. Gọi M là trung điểm của BC. Đường thẳng vuông góc với MH tại H cắt AB và AC theo thứ tự tại I và K. J là một điểm thuộc đoạn AE sao cho góc BJC=90.
a) CMR: HI=HK
b) CMR: dt(\(BJC \))^2 = dt(ABC).dt(HBC)
c) Gọi Q là một điểm trên (O) sao cho góc AQH=90. CMR 3 điểm Q,H,M thẳng hàng
cho tam giác ABC nội tiệp (o). Kẽ các đường cao AD, BE, CF của tam giác (H là trực tâm) kẽ đường kính AOM
a) ABM=90
b) cm tứ giác BHCM là hình bình hành
c)gọi I là giao điểm của HM và BC Cm OI vuông góc với BC và AH= 2OI
d) CM DB.DC=AD.HD
Cho tam giác ABC(AB=AC) kẻ đường cao AH cắt đường tròn tâm O ngoại tiếp tam giác tại D câu a chứng minh :AD là đường kính câu b tính góc ACD câu c biết AC=AB=20cm,BC=24cm tính bán kính của đường tròn tâm (O)
Cho tam nhọn ABC có trực tâm H và nội tiếp đường tròn (O) đường kính AD = 2R.
a) Chứng minh tứ giác BHCD là hình hình hành.
b) Kẻ OI vuông góc với BC tại I. Chứng minh I, H, D thẳng hàng.
c) Chứng minh AH = 2OI d)\(AH^2+BC^2\)=4\(R^2\)