Cho tam giác ABC vuông tại A,đường cao AH. Gọi M,N lần lượt là hình chiếu vuông góc của H lên AB và AC. a, biết AC bằng 16 cm, sinCAH=4/5. Tính độ dài các cạnh BC,AB và cosB b,chứng minh AM x AB = AN x AC và tam giác ABC đồng dạng với tam giác AMN. c, chứng minh MA x MB + NA × NC=HB×HC d, Chứng minh S AMN/ S ABC=sin²B×sin²C
Cho ∆ABC nhọn đường cao AD. Vẽ DE vuông góc AB tại E, DF vuông góc AC tại F.
a) Chứng minh: AD2 = AB.AE và AB.AE = AC.AF
b) Chứng minh: ∆AEF đồng dạng ∆ACB.
c) Cho biết góc ABC 60 độ , góc ACB 45 độ , AD = 40 cm. Tính AB, AC, BC.
Cho tam giác ABC vuông tại A có AH vuuong gócvới BC. Cho AB = 6cm, AC = 8cm. Gọi M là trung điểm HC
a) Tính BC, AH và góc AMH?
b) Không tính, hãy chứng minh tan góc AMH = 2 tan . C
cho tam giác ABC vuông tại A có đường cao AD,AB=a và AC=a\(\sqrt{2}\)
a) Giải tam giác ABC(độ dài cạnh tính theo a và số đo góc làm tròn đến phút)
b) Gọi M là trung điểm BC,N là trung điểm AC và E là giao điểm AM và BN.Chứng minh AM⊥BN tại E
c) Chứng minh \(\widehat{BND}\)=\(\widehat{BCE}\)
2) Cho tam giác vuông tại , đường cao .
a) Biết cm, cm. Giải tam giác .
b) Kẻ lần lượt vuông góc với ( thuộc , thuộc ). Chứng minh
c) Lấy điểm nằm giữa và , kẻ vuông góc với tại Chứng minh
Cho DABC vuông tại A có AH ^ BC. Cho AB = 6cm, AC = 8cm. Gọi M là trung điểm HC
a) Tính BC, AH và góc AMH?
b) Không tính, hãy chứng minh tan góc AMH = 2 tan . C
cho tam giác ABC vuông tại A có AB = 6 ;C = 40° a.tính AC;BC=? b.gọi BN là tia phân giác B. K là hình chiếu của A lên BN đường cao AH của tam giác ABC cắt BN tại E. CMR. 1/AK² = 1/AB² + 1/AE². c. AK cắt BC tại I. Tính KHI=?
Cho tam giác ABC vuông tại A có đường cao AH. Gọi D và E lần lượt là hình chiếu của H trên AB và AC . Gọi O là trung điểm của BC.
a) Nếu cho biết thêm AB = 6cm, BH = 4cm, hãy tính độ dài cạnh AC (giả thiết thêm này chỉ dùng cho riêng câu a không dùng để làm những câu còn lại).
b) Chứng minh tam giác ADE đồng dạng tam giác ACB và AO vuông góc với DE.
c) Chứng minh BD*căn CH+ CE*căn BH =AH*căn BC .
Tam giác ABC vuông tại B có AC = 10 và . Độ dài cạnh AB, BC là