Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoang Hung Quan

Cho tam giác \(ABC\) nhọn. CMR:

\(\cos\left(\dfrac{A-B}{2}\right)+\cos\left(\dfrac{B-C}{2}\right)+\cos\left(\dfrac{C-A}{2}\right)\)

\(\le\dfrac{\sqrt{2}}{2}\left(\dfrac{a+b}{\sqrt{a^2+b^2}}+\dfrac{b+c}{\sqrt{b^2+c^2}}+\dfrac{c+a}{\sqrt{c^2+a^2}}\right)\)

Hung nguyen
12 tháng 4 2017 lúc 11:27

Không ai thảo luận câu này sao. T khởi động trước nhá.

Ta có: \(\cos\left(\dfrac{A-B}{2}\right)=\dfrac{\cos\left(\dfrac{A-B}{2}\right).\cos\left(\dfrac{A+B}{2}\right)}{\sin\dfrac{C}{2}}\)

\(=\dfrac{\cos A+\cos B}{2\sqrt{\dfrac{1-\cos C}{2}}}=\dfrac{\dfrac{b^2+c^2-a^2}{2bc}+\dfrac{a^2+c^2-b^2}{2ca}}{2\sqrt{\dfrac{1-\dfrac{a^2+b^2-c^2}{2ab}}{2}}}\)

\(=\dfrac{\dfrac{\left(a+b\right)\left(c^2-\left(a-b\right)^2\right)}{abc}}{2\sqrt{\dfrac{c^2-\left(a-b\right)^2}{ab}}}=\dfrac{\left(a+b\right)\sqrt{c^2-\left(a-b\right)^2}}{2c\sqrt{ab}}\)

Ta sẽ chứng minh: \(\dfrac{\left(a+b\right)\sqrt{c^2-\left(a-b\right)^2}}{2c\sqrt{ab}}\le\dfrac{a+b}{\sqrt{2\left(a^2+b^2\right)}}\)

\(\Leftrightarrow\dfrac{2abc^2}{c^2-\left(a-b\right)^2}\ge a^2+b^2\)

\(\Leftrightarrow2abc^2-\left(a^2+b^2\right)\left(c^2-\left(a-b\right)^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+b^2-c^2\right)\ge0\) (đúng vì tam giác ABC nhọn)

\(\Rightarrow\cos\left(\dfrac{A-B}{2}\right)\le\dfrac{a+b}{\sqrt{2\left(a^2+b^2\right)}}\left(1\right)\)

Tương tự ta có: \(\left\{{}\begin{matrix}\cos\left(\dfrac{B-C}{2}\right)\le\dfrac{b+c}{\sqrt{2\left(b^2+c^2\right)}}\left(2\right)\\\cos\left(\dfrac{C-A}{2}\right)\le\dfrac{c+a}{\sqrt{2\left(c^2+a^2\right)}}\left(3\right)\end{matrix}\right.\)

Cộng (1), (2), (3) vế theo vế ta được ĐPCM.


Các câu hỏi tương tự
Hoang Hung Quan
Xem chi tiết
noname
Xem chi tiết
Xem chi tiết
Sĩ Bí Ăn Võ
Xem chi tiết
Quynh Existn
Xem chi tiết
Quynh Existn
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Đặng Hà Minh Huyền
Xem chi tiết
Nguyễn Quân
Xem chi tiết