cho tam giác ABC cân tại A,góc A nhọn,các đường trung trực của AB,AC cắt nhau tại O.Vẽ hình.
a,chứng minh AO là tia phân giác của góc A
b,qua B kẻ đường thẳng vuông góc với AB,qua C kẻ đường thẳng vuông góc với AC chúng cắt nhau tai K
c,kẻ BD vuông góc với AC,CE vuông góc với AB,BD cắt CE tại H.chứng minh A,O,H,K thẳng hàng
Cho tam giác ABC có các góc đều nhọn và AB < AC. Phân giác của góc A cắt cạnh BC tại D. Vẽ BE vuông góc với AD tại E. Tia BE cắt cạnh AC tại F.
a, Chứng minh AB = AF.
b, Qua F vẽ đường thẳng song song với BC, cắt AE tại H. Lấy điểm K nằm giữa D và C sao cho FH = DK. Chứng minh DH = KF và DH // KF.
c, Chứng minh góc ABC lớn hơn góc C.
cho tam giác ABC cân tại A,góc A nhọn,các đường trung trực của AB,AC cắt nhau tại O.Vẽ hình.
a,chứng minh AO là tia phân giác của góc A
b,qua B kẻ đường thẳng vuông góc với AB,qua C kẻ đường thẳng vuông góc với AC chúng cắt nhau tai K.chứng minh AK là tia phân giác của góc A.
c,kẻ BD vuông góc với AC,CE vuông góc với AB,BD cắt CE tại H.chứng minh A,O,H,K thẳng hàng
Cho tam giác ABC có AB < AC. Qua trung điểm K của BC vẽ đường thẳng d vuông góc với tia phân giác của góc A, d cắt AB, AC lần lượt tại H, I.
a) Chứng minh rằng: BH = CI
b) Chứng minh rằng: góc KAB> góc KAC
c) Nếu góc A vuông, gọi M, N lần lượt là trung điểm của AB, AC. Cmr: BN^2 + CM^2 = 5/4 * BC^2
d) Lấy điểm P thay đổi trên AB, điểm Q thay đổi trên AC sao cho BP = CQ. Chứng minh rằng: Đường thẳng đi qua trung điểm và vuông góc với PQ luôn đi qua một điểm cố định.
cho tam giác ABC vuông tại A (AB<AC) tia phân giác của góc A cắt BC tại D qua D kẻ đường thẳng vuông góc với BC cắt AC tại E trên AB lấy điểm F sao cho AF=AE chứng minh:
a) Góc B= góc DEC
b) Tam giác DBE là tam giác cân
c)Chứng minh DB=DE
CHo tam giác ABC có AB=9cm, AC= 12 cm và BC = 15 cm. Vẽ tia phân giác của góc B cắt cạnh AC tại D. Trên cạnh BC lấy điểm E sao cho BE=BA. Đường thẳng DE cắt đường thẳng AB tại F. a, Chứng minh tam giác ABC vuông. b, Chứng minh DE vuông góc với BC rồi so sánh AD và DC. c, Gọi M, N lần lượt là trung điểm của AE và CF. CHứng minh ba điểm M,D,N thẳng hàng
mn giúp mik vs mik cần gấp.
Cho tam giác ABC, có AB=AC,. Kẻ phân giác CD( D thuộc AB). Qua D vẽ đường thẳng song song CD cắt BC tại F và cắt CA tại K Đường thẳng kẻ qua ND và song song với BC cắt AC tại F. Phân giác cửa góc BAC cắt DE tại M.
a) Chứng minh: tam giác CDF bằng tam giác CDK bằng nhau.
B)Các tam giác DEC và tam giác DEK là tam giác cân
c) CF=2BD d) MD = 1/4 CF.
Cho tam giác ABC có AB =AC, M là trung điểm của BC a) Chứng minh AM là tia phân giác của góc BAC b) AM vuông góc với BC c) Từ C kẻ đường thẳng song song với AB, cắt AM tại D. Chứng minh tam giác ADC cân
Cho ∆ABC vuông tại A có AB=9cm, AC=12cm A. Tính độ dài cạnh BC và so sánh các góc của ∆ABC B. Tia phân giác của góc ABC cắt AC tại D. Vẽ DH vuông góc BC(H thuộc BC). Chứng minh AD=HD C. Gọi E là giao điểm của 2 đường thẳng HD và BA. Kéo dài BD cắt tại T. CM: BI vuông góc EC