Cho tam giác ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B,C). Gọi Mlà trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME= MB, trên tia đối của tia MC lấy điểm F sao cho MF= MC. Chứng minh rằng:
a) tam giác AME = tam giác DMB; AE // BC b) Ba điểm E, A, F thẳng hàng c) BF // CE
@Trần Việt Linh
a)Xét ΔAME và ΔDMB có:
AM=DM(gt)
\(\widehat{AME}=\widehat{DMB}\left(đđ\right)\)
ME=MB(gt)
=> ΔAME=ΔDMB(c.g.c)
=> \(\widehat{AEM}=\widehat{DBM}\). Mà hai góc này ở vị trí sole trong
=> AE//BC
b)Xét ΔAMF và ΔDMC có:
AM=DM(gt)
\(\widehat{AMF}=\widehat{DMC}\left(đđ\right)\)
MF=MC(gt)
=> ΔAMF=ΔDMC(c.g.c)
=> \(\widehat{AFM}=\widehat{DCM}\). Mà hai góc này ở vị trí sole trong
=> AF//DC
Vì: AE//BC(cmt) ; AF//BC(cmt)
=> Ba điểm E,A ,F thẳng hàng
c) Xét ΔMBF và ΔMEC có:
MB=ME(gt)
\(\widehat{BMF}=\widehat{EMC}\left(đđ\right)\)
MF=MC(gt)
=>ΔMBF=ΔMEC(c.g.c)
=>\(\widehat{MFB}=\widehat{MCE}\). Mà hai góc này ở vị trí sole trong
=>BF//CE