Hình học lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Mai Khánh Huyề...

Cho tam giác ABC là tam giác nhọn có AB<AC. Gọi M là trung điểm của cạnh BC. Trên tia đối của tia MA lấy điểm D sao cho MD= MA.

a) Chứng minh tam giác ABM= tam giác DCM, từ đó suy ra AB//DC

b) Kẻ AH và DK lần lượt vuông góc với BC( H,K thuộc BC). Chứng minh AH=DK

Aki Tsuki
30 tháng 12 2016 lúc 22:49

a/ Xét \(\Delta ABM\)\(\Delta DCM\) có:

BM = CM (gt)

\(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)

MA = MD (gt)

=> \(\Delta ABM=\Delta DCM\left(c-g-c\right)\)

=> \(\widehat{BAM}=\widehat{CDM}\) (2 góc tương ứng)

mà 2 góc này lại ở vị trí so le trong nên:

=> AB = DC (đpcm)

b/ Xét 2 \(\Delta\) vuông: \(\Delta HAM\)\(\Delta KDM\) có:

MA = MD (gt)

\(\widehat{HMA}=\widehat{KMD}\) (đối đỉnh)

=> \(\Delta HAM=\Delta KDM\) (cạnh huyeeng - góc nhọn)

=> AH = DK (2 cạnh tương ứng)(đpcm)

Hải Ninh
30 tháng 12 2016 lúc 22:50

M A B C H K 1 2

a) Xét \(\Delta ABM\)\(\Delta DCM\) có:

MA = MD (gt)

\(\widehat{AMB} = \widehat{DMC}\) (đối đỉnh)

MB = MC (M là trung điểm BC (gt))

\(\Rightarrow\)\(\Delta ABM = \Delta DCM\) (cgc)

\(\Rightarrow\)\(\widehat{BAM} = \widehat{CDM}\) (2 góc tương ứng)

mà 2 góc này nằm ở vị trí so le trong

\(\Rightarrow\) AB // DC

b) Xét \(\Delta AHM\)\(\Delta DKM\) có:

\(\widehat{AHM} = \widehat{DKM} = 90^0\)

MA = MD

\(\widehat{AMB} = \widehat{DMC}\) (đối đỉnh)

\(\Rightarrow\)\(\Delta AHM = \Delta DKM\) (cạnh huyền-góc nhọn)

\(\Rightarrow\) AH = DK (2 cạnh tương ứng)


Các câu hỏi tương tự
Trần Hiểu Nghiên Hy
Xem chi tiết
Nguyễn Phương Nhi
Xem chi tiết
Trần Hiểu Nghiên Hy
Xem chi tiết
Phạm Minh Hiền
Xem chi tiết
Phạm Minh Hiền
Xem chi tiết
Nguyễn Phương Nhi
Xem chi tiết
Nguyễn Thảo Hân
Xem chi tiết
Nguyễn Văn Mạnh
Xem chi tiết
Công Cu
Xem chi tiết