Cho vectơ \(\overrightarrow{v}\), đường thẳng d vuông góc với giá của \(\overrightarrow{v}\). Gọi d' là ảnh của d qua phép tịnh tiến theo vectơ \(\dfrac{1}{2}\overrightarrow{v}\). Chứng minh rằng phép tịnh tiến theo vectơ \(\overrightarrow{v}\) là kết quả của việc thực hiện liên tiếp phép đối xứng qua các đường thẳng d và d' ?
Trong mặt phẳng Oxy cho đường tròn \(\left(x-1\right)^2+\left(y-2\right)^2=9\). Viết phương trình đường tròn ảnh của đường tròn đã cho qua phép dời hình có được bằng cách thực hiện liên tiếp phép tịnh tiến theo vectơ \(\overrightarrow{v}=\left(2;0\right)\) và phép vị tự tâm O tỉ số \(k=-3\)
Trong mặt phẳng Oxy cho đường thẳng d có phương trình \(3x-y-3=0\). Viết phương trình đường thẳng \(d_1\) là ảnh của d qua phép dời hình có được bằng cách thực hiện liên tiếp tịnh tiến theo vectơ \(\overrightarrow{v}=\left(-1;2\right)\) và phép quay tâm O góc quay \(-90^0\)
Trong mặt phẳng hệ trục tọa độ Oxy, cho điểm I(2;1), \(\overrightarrow{v}=\left(1;1\right)\) và đường thẳng \(\Delta:x+2y-3=0\). Tìm phương trình đường thẳng \(\Delta'\) là ảnh của \(\Delta\) qua phép dời hình có được bằng cách thực hiện liên tiếp \(T_{\overrightarrow{v}}\) và \(Q_{\left(O,90^o\right)}\)
Cho lục giác đều ABCDEF tâm O. Tìm ảnh của tam giác AOF :
a) Qua phép tịnh tiến theo vectơ \(\overrightarrow{AB}\)
b) Qua phép đối xứng qua đường thẳng BE
c) Qua phép quay tâm O góc \(120^0\)
Cho hình chữ nhật ABCD. Gọi O là tâm đối xứng của nó. Gọi I, F, J, E lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Tìm ảnh của tam giác AEO qua phép đồng dạng có được từ việc thực hiện liên tiếp phép đối xứng qua đường thẳng IJ và phép vị tự tâm B, tỉ số 2 ?
Trong mặt phẳng Oxy cho đường thẳng d có phương trình \(3x-5y+3=0\) và vectơ \(\overrightarrow{v}\left(2;3\right)\). Hãy viết phương trình đường thẳng d' là ảnh của d qua phép tịnh tiến theo vectơ \(\overrightarrow{v}\)
Tìm ảnh của đường thẳng (C):\(\left(x-1\right)^2+\left(y+5\right)^2=8\) qua phép tịnh tiến theo \(\overrightarrow{a}\)=(2,-1)
Gọi A', B' và C' tương ứng là ảnh của ba điểm A, B,C qua phép đồng dạng. Chứng minh rằng nếu \(\overrightarrow{AB}=p\overrightarrow{AC}\) thì \(\overrightarrow{A'B'}=p\overrightarrow{A'C}'\) trong đó p là một số. Từ đó chứng minh rằng phép đồng dạng biến ba điểm thẳng hàng thành ba điểm thẳng hàng nếu điểm B nằm giữa hai điểm A và C thì điểm B' nằm giữa hai điểm A' và C' ?