Hình học lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thanh Nga Nguyễn

cho tam giac ABC deu tren cac canh AB va AC lan luot lay cac diem M va N sao cho AM=AN chung minh tam giac AMN la tam giac deu b) MN song song voi BC

Hải Ninh
28 tháng 2 2017 lúc 23:15

A B C M N

a) Xét \(\Delta ABC\) có AM = AN (gt)

\(\Rightarrow\)\(\Delta AMN\) cân tại A (t/c)

\(\widehat{A} = 60^0\)(Tg ABC đều)

\(\Rightarrow\)\(\Delta AMN \) đều

b) Ta có:

\(\widehat{B} = 60^0\)

\(\widehat{AMN} = 60^0\)

mà 2 góc này nằm ở vị trí đồng vị

\(\Rightarrow\)MN // BC

Hoàng Thị Ngọc Anh
28 tháng 2 2017 lúc 22:24

a) Vì \(\Delta ABC\) đều nên \(\widehat{MAN}=60^o\) (1)

\(AM=AN\Rightarrow\Delta AMN\) cân tại A (2)

Từ (1) và (2) suy ra \(\Delta AMN\) đều.

b) Do \(\Delta ABC\) đều \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)

Áp dụng t/c tổng 3 góc trog 1 t/g ta có:

\(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^o\)

\(\Rightarrow2\widehat{ABC}=180^o-\widehat{BAC}\)

\(\Rightarrow\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\left(3\right)\)

Do \(\Delta AMN\) cân tại A

\(\Rightarrow\widehat{AMN}=\widehat{ANM}\)

Áp dụng t/c tổng 3 góc trog 1 t/g ta có:

\(\widehat{AMN}+\widehat{ANM}+\widehat{BAC}=180^o\)

\(\Rightarrow2\widehat{AMN}=180^o-\widehat{BAC}\)

\(\Rightarrow\widehat{AMN}=\frac{180^o-\widehat{BAC}}{2}\left(4\right)\)

Từ (3) và (4) \(\Rightarrow\widehat{ABC}=\widehat{AMN}\)

mà 2 góc này ở vị trí đồng vị nên MN // BC.


Các câu hỏi tương tự
Dương Hải Minh
Xem chi tiết
Thanh Nga Nguyễn
Xem chi tiết
nguyển thị việt hà
Xem chi tiết
Hoang Linh
Xem chi tiết
Nhi Le
Xem chi tiết
ITACHY
Xem chi tiết
ke tui
Xem chi tiết
ITACHY
Xem chi tiết
Nguyễn Trang
Xem chi tiết