Cho tam giac ABC cân tại A . Trên cạnh AB lấy điểm M , tên tia đối của tia CA lấy điểm N sao cho BM = CN. Gọi I là trung điểm của MN . CM 3 điểm B, I, C thẳng hàng
Tam giác ABC cân có AB = AC = 5; BC = 8. Trên đường thẳng qua A và song song BC lấy M, N: AM = AN = 4,5. Gọi H, I, K trung điểm MB, BC, CN.
a) Tính diện tích ABC
b) MNCB hình gì? Tính chu vi, diện tích.
c) AHIK hình gì? Tính chu vi, diện tích.
Hình chữ nhật có đường chéo tạo với một cạnh một góc 30º. Đường chéo của hình chữ nhật đó dài 4cm. Diện tích của hình chữ nhật đó là
..
.
,,
,
.
,,
..
,
Cho tam giác ABC có chu vi là 8cm. Gọi tam giác A’B’C’ đối xứng với tam giác ABC qua đường thẳng d. Chu vi tam giác A’B’C’ là:
Một giá trị khác
16cm
8cm
6cm
2
4
8
16
Không có giá trị nào của n
1; 2; 3
1; 2
0; 1; 2; 3
Xóa lựa chọn
..
,,
,
.
Xóa lựa chọn
Phân tích đa thức 4x² – 25y² thành nhân tử ta được
(4x – 5y) ²
(4x – 25y)(4x + 25y)
(2x² – 5y²)(2x + 5y)
(2x – 5y)(2x + 5y)
Kết quả của phép chia 8x²y⁴ : 2x²y³ là:
4y
4xy
4xy²
2y
Giá trị của a để đa thức 2x² – 3x + a chia hết cho đa thức x – 2 là
4
2
–2
3
Số đo mỗi góc của lục giác đều là
60º
120º
108º
100º
Kết quả phân tích đa thức x² – x – 6 thành nhân tử là
(x + 3)(x – 2)
(x – 3)(x + 2)
(x + 6)(x – 1)
(x – 6)(x + 1)
Kết quả phân tích đa thức 5x³ – 10x²y + 5xy² thành nhân tử là
– 5x(x + y) ²
5x(x – y) ²
x(x + 5y) ²
x(5x – y) ²
Khai triển hằng đẳng thức (x – 2y) ² ta được:
x² + 4y² – 4xy
x² – 2xy + 4y²
x² – 2xy + 2y²
x² – 4xy + y²
Chọn câu trả lời đúng
Tứ giác có hai đường chéo vuông góc là hình thoi
Hình thoi là tứ giác có tất cả các góc bằng nhau
Hình bình hành có một đường chéo là đường phân giác của một góc là hình vuông
Hình chữ nhật có hai đường chéo vuông góc là hình vuông
Một mảnh vườn hình vuông có chu vi là 28m. Diện tích của mảnh vườn đó là
49cm²
56m²
784m²
49m²
Rút gọn biểu thức M = x³ – 8 – (x – 1)(x² + x + 1), ta được
2x³– 9
2x³ – 7
– 7
– 9
13cm
7,5cm
6,5cm
10cm
Khi x = –2 thì A = 5
Khi x = 1 thì A = 8
Khi x = –1 thì A có giá trị nhỏ nhất bằng 4
A có luôn có giá trị âm
Hình chữ nhật có đường chéo tạo với một cạnh một góc 30º. Đường chéo của hình chữ nhật đó dài 4cm. Diện tích của hình chữ nhật đó là
..
.
,,
,
.
,,
..
,
Cho tam giác ABC có chu vi là 8cm. Gọi tam giác A’B’C’ đối xứng với tam giác ABC qua đường thẳng d. Chu vi tam giác A’B’C’ là:
Một giá trị khác
16cm
8cm
6cm
2
4
8
16
tìm GTLN của -||x|-1|+5
Cho tam giác ABC. Trên tia đối của tia BA và CA lấy hai điểm di động M và N sao cho BM = CN. Gọi I là trung điểm của NM. Điểm I di động trên đường nào?
tam giác ABC có góc A bằng 90 độ. Trên tia đối tia AB lấy D : AD = AC và trên tia đối tia AC lấy E : AE = AB.
a) Chứng minh DE = BC
b) Gọi M,N trung điểm BE, CD. Chứng minh A,M,N thẳng hàng
c) C/m BE // CD
d) Gọi P trung điểm BC. C/m AP = DE
Câu 27: Cho tam giác ABC có M, N, P lần lượt là trung điểm của AB, AC, BC; biết chu vị tam giác ABC = 30cm thì chu vi tam giác MNP bằng A. 60cm B. 15cm C.10 cm D.20cm Câu 28: Cho hình thang cân ABCD (AB//CD) biết góc D= 105° thì góc A bằng A. 850 B. 750 C. 650 D.50 độ Câu 29: Cho hình thang ABCD có AB//CD; M, N lần lượt là trung điểm của AD, BC; MN = 21cm thì AB+ CD bằng: A.18cm B. 10,5cm C.21cm D.42cm Câu 30:Cho hình thang cân ABCD (AB//CD); biết AB//CD; AB= 34cm; CD = 10cm; vẽ AH; BK cùng vuông góc CD thì DH bằng: A. 7cm B.10cm C.12cm D.16cm Câu 31:Hình nào sau đây không có tâm đối xứng: A. Hình chữ nhật B. Hình thoi C. Hình thang Câu 32: Hình nào sau đây có 3 trục đối xứng A. Hình chữ nhật B.Hình thoi C.Tam giác đều D. Hình bình hanh Câu 33:Hình nào sau đây có 4 trục đối xứng A. Hình chữ nhật B.Hình thoi C. Hình thang cân d.Hình vuông Câu 34: Cho hình bình hành MNPQ có A; B lần lượt là trung điểm của MN; PQ khi đó ta có số các hình bình hành tạo bởi từ 4 trong 6 điểm đã cho trong hình vẽ có cùng tâm đối xứng là: A.5 B. 3 C. 7 D. 9 Câu 35: Cho tứ giác ABCD có M; N; P, Q lần lượt là trung điểm của AB, BC, CD, DA khi đó tứ giác MNPQ là: A. Hình bình hành B. Hình chữ nhật C. Hình thang. D. Hình vuông Câu 36: Cho hình chữ nhật ABCD có M; N; P, Q lần lượt là trung điểm của AB, BC; - Tải lại đề khi đó tứ giác MNPQ là: . A. Hình bình hành B. Hình chữ nhật C. Hình thoi. D. Hình vuông Câu 37: Cho hình thoi ABCD có M; N; P, Q lần lượt là trung điểm của AB, BC, CD; DA khi đó tứ giác MNPQ là: A. Hình bình hành B. Hình chữ nhật C. Hình thoi. D. Hình vuông Câu 38: Cho tam giác ABCvuông ở A có AB= 5cm, AC = 12cm thì diện tích tam giác ABC là: A 60 cm? B.30 cm C. 30 cm D. Một đáp án khác Câu 39: Cho hình chữ nhật ABCD có AB = 8cm, AC = 10cm thì diện tích của hình chữ nhật là: A.80cm? B. 60cm C. 40cm? D.48cm? Câu 40: Cho tam giác ABC vuông cân ở A có M; N; P lần lượt là trung điểm của AB, AC; BC khi đó tứ giác AMPN là A. Hình bình hành B. Hình chữ nhật C. Hình thoi. D. Hình vuông giúp e với ạ tối em thi rồi ạ🤧
cho tam giác ABC vuông tại A,có AB=12 cm ;AC=16 cm kẻ đường cao AH (H thuộc BC)
chứng minh tam giác HBA đồng dạng với tam giác ABC
tính độ dài các cạnh BC,AH
trên tia HC lấy điểm D sao cho HD=HA.Đường vuông góc với BC tại D cắt AC tại E .Gọi M là trung điểm của BE,tia AM cắt BC tại G. chứng minh GB trên BC =HD trên AH+HC
cho tam giác ABC vuông tại A,có AB=12 cm ;AC=16 cm kẻ đường cao AH (H thuộc BC)
chứng minh tam giác HBA đồng dạng với tam giác ABC
tính độ dài các cạnh BC,AH
trên tia HC lấy điểm D sao cho HD=HA.Đường vuông góc với BC tại D cắt AC tại E .Gọi M là trung điểm của BE,tia AM cắt BC tại G. chứng minh GB trên BC =HD trên AH+HC