a) Xét tam giác CEF và tam giác FBD có:
- DF là cạnh chung
- Góc EDF = góc DFB ( Hai góc so le nhau trong của DE//BC )
- Góc BDF = góc EDF ( Hai góc so le nhau trong của EF//AB )
=> Tam giác CEF = tam giác FBD ( g.c.g )
=> EF = DB ( 2 cạnh tương ứng )
Mà BD = AD ( D là trung điểm của AB )
=> EF = AD
Vậy AD = EF
b)
Vì tam giác ADE = tam giác EFC
=> AE = EC ( vì 2 cạnh tương ứng )
BẠN TỰ VẼ HÌNH NHA!!
a. Xét \(\Delta CEF\) và \(\Delta FBD\) có :
DF chung
\(\widehat{EDF}=\widehat{DEB}\) ( 2 góc so le trong )
\(\widehat{BDF}=\widehat{EDF}\) ( 2 góc so le trong)
\(\Rightarrow\Delta CEF=\Delta FBD\) ( g.c.g)
\(\Rightarrow\) EF=DB (2 cạch tương ứng)
mà BD=AD (D là trung điểm của AB
\(\Rightarrow\) AD=EF