\(\widehat{BAC}\)= 1800 - (\(\widehat{B}+\widehat{C}\)) = 1800 - ( 800 + 300)= 700
\(\widehat{A}_1\)=\(\widehat{A}_2\)=\(\dfrac{\widehat{A}}{2}\)=\(\dfrac{70^0}{2}\)= 350
\(\widehat{ADC}=\widehat{B}+\widehat{A}_1\)(Góc ngoài của tam giác)
=800 + 350)= 1150
Do đó \(\widehat{ADB}\)= 1800 - \(\widehat{ADC}\)= 1800 + 1150=650
Hình vẽ:
Gọi A1, A2 là 2 góc được tạo ra bởi tia phân giác góc A.
Ta có:
Góc ∠BAC = 1800 – ( ∠B + ∠C)
= 1800 – ( 800 + 300) = 700
Hay ta có thể gọi ∠A = 700
Góc ∠A1 = ∠A2
= ∠A/2 = 700 /2 = 350
Xét tam giác ADC ta có: Góc ∠ADC = 1800 – (∠C + ∠A2)= 1800 – (350 + 300)= 1150
Do đó góc ∠ADB = 1800 – ∠ADC= 1800 – 1150
= 650
Giải:
ˆBACBAC^= 1800 - (ˆBB^+ˆCC^) = 1800 - ( 800 + 300)= 700
ˆA1A1^=ˆA2A2^=ˆA2A^2=70027002= 350
ˆADCADC^=ˆBB^+ˆA1A1^(Góc ngoài của tam giác)
=800 + 350)= 1150
Do đó ˆADBADB^= 1800 - ˆADCADC^= 1800 + 1150=650