Hình tự vẽ
Giải
Vì BD là tia p/giác \(\widehat{ABC}=>\widehat{ABD}=\widehat{CBD}=\dfrac{\widehat{ABC}}{2}\) mà \(\widehat{ACB}=\dfrac{\widehat{ABC}}{2}=>\widehat{ACB}=\widehat{ABD}=CBD\)
Ta có: \(\widehat{ACK}+\widehat{ACB}=\) 180* (2 góc kề bù)
\(\widehat{ABD}+\widehat{ABE}=\)180* (2 góc kề bù)
mà \(\widehat{ACB}=\widehat{ABD}\left(cmt\right)\)
=> \(\widehat{ACK}=\widehat{ABE}\)
Xét t/g ACK và t/g ABE có:
\(\widehat{ACK}=\widehat{EBA}\left(cmt\right)\)
CK = AB (gt)
BE = AC (gt)
Do đó: t/g ACK = t/g EBA (c-g-c)
=> AE = AK (2 cạnh t/ứng)