Cho tam giác ABC, góc B > góc C. Đường thẳng chứa tia phân giác góc ngoài tại đỉnh A cắt đường thẳng BC tại N. Tia phân giác trong của góc A cắt BC tại M. Chứng minh \(\widehat{ANC}=\dfrac{\widehat{AMC}-\widehat{AMB}}2\).
Cho tam giác ABC có \(\widehat{B}-\widehat{C}=20^0\). Tia phân giác của góc A cắt BC ở D.
Tính số đo các góc \(\widehat{ADC},\widehat{ADB}\) ?
Cho tam giác ABC có \(\widehat{B}=80^0,\widehat{C}=30^0\). Tia phân giác của góc A cắt BC ở D. Tính \(\widehat{ADC},\widehat{ADB}\) ?
Cho tam giác ABC có \(\widehat{A}=60^0;\widehat{C}=50^0\). Tia phân giác của góc B cắt AC ở D
Tính \(\widehat{ADB},\widehat{CDB}\) ?
Cho tam giác ABC. Các tia phân giác của các góc B và C cắt nhau ở I. Tính \(\widehat{BIC}\) biết rằng :
a) \(\widehat{B}=80^0,\widehat{C}=40^0\)
b) \(\widehat{A}=80^0\)
c*) \(\widehat{A}=m^0\)
Cho tam giác ABC có số đo của các góc (tính theo độ) là số nguyên và \(\widehat{A}-\widehat{B}=\widehat{B}-\widehat{C}\). Tính GTLN của \(\widehat{A}\)
Cho tam giác ABC có \(\widehat{B}=70^0,\widehat{C}=30^0\). Tia phân giác của góc A cắt BC tại D. Kẻ AH vuông góc với BC (\(H\in BC\))
a) Tính \(\widehat{BAC}\) ?
b) Tính \(\widehat{ADH}\) ?
c) Tính \(\widehat{HAD}\) ?
Cho tam giác ABC có \(\widehat{B}=\widehat{C}=50^0\). Gọi Am là tia phân giác của góc ngoài ở đỉnh A. Hãy chứng tỏ rằng Am // BC ?
Cho tam giác ABC có \(\widehat{B}=\widehat{C}=40^0\). Gọi Ax là tia phân giác của góc ngoài ở đỉnh A. Hãy chứng tỏ Ax // BC ?