Cho tam giác ABC nhọn và G là điểm bất kỳ trong tam giác ABC; qua G vẽ các tia vuông góc với BC' CA' AB lần lượt cắt các cạnh đó tại D, E, F. Trên các tia GD, GE, GF lấy các điểm A', B', C' sao cho GA'/BC = GB'/AC = GC'/AB. Gọi H là điểm đối xứng A' qua G
a. CM HB' song song GC'
b. CM G là trọng tâm tam giác A'B'C'
Cho tam giác ABC nhọn và G là điểm bất kỳ trong tam giác ABC; qua G vẽ các tia vuông góc với BC' CA' AB lần lượt cắt các cạnh đó tại D, E, F. Trên các tia GD, GE, GF lấy các điểm A', B', C' sao cho GA'/BC = GB'/AC = GC'/AB. Gọi H là điểm đối xứng A' qua G
a. CM HB' song song GC'
b. CM G là trọng tâm tam giác A'B'C'
Cho tam giác ABC nhọn và G là điểm bất kỳ trong tam giác ABC; qua G vẽ các tia vuông góc với BC' CA' AB lần lượt cắt các cạnh đó tại D, E, F. Trên các tia GD, GE, GF lấy các điểm A', B', C' sao cho GA'/BC = GB'/AC = GC'/AB. Gọi H là điểm đối xứng A' qua G
a. CM HB' song song GC'
b. CM G là trọng tâm tam giác A'B'C'
Bài 2. Cho tam giác nhọn ABC, trực tâm H nội tiếp (O) (BC < 2R). Gọi D, E, F lần lượt là trung điểm BC, CA, AB và P, M, N lần lượt là hình chiếu vuông góc của A, B, C lên BC, DF, DE. Gọi Q là hình chiếu vuông góc của H lên AD. Chứng minh PMQN là tứ giác điều hòa.
Bài 3. Cho tam giác ABC, điểm P nằm trong ΔABC. Gọi B, C, lần lượt là điểm đối xứng với P qua AC, AB; E, F lần lượt là hình chiếu vuông góc của P trên AC, AB. Đường tròn đường kính AP cắt đường tròn (AB'C') tại Q(Q≠A) .Chứng minh rằng PEQF là tứ giác điều hòa
cho tam giác ABC trung điểm BC là D, O thuộc AD sao cho AO=4OD. E là giao điểm CO và AB, F là giao điểm BO và AC, M là giao điểm AD và EF. TÌm MO/AD
Bài 1: Cho ∆ABC đều, kẻ AH vuông góc với BC tại H. Trên tia đối của tia BC lấy điểm E sao cho BE = BC. Trên tia đối của tia CB lấy điểm D sao cho CB = CD. a) Chứng minh rằng ∆AEB = ∆ADC b) Từ D kẻ DF vuông góc với AC tại F. Chứng minh rằng ∆CHF cân c) Chứng minh rằng AD//HF d) Từ B kẻ BM vuông góc AE tại M, từ C kẻ CN vuông góc với AD tại N. Gọi I là giao điểm của BM và CN. Chứng minh AI là phân giác của 𝐵𝐴𝐶
Bài 2: Cho ∆ABC có AB= AC = 5cm, BC = 6CM. Kẻ AK vuông góc với BC ( K ∈ BC). a) Chứng minh rằng KB = KC và 𝐵𝐴𝐾 ̂ =𝐶𝐴𝐾 ̂ b) Tính độ dài AK c) Kẻ KE vuông góc với AB ( E ∈ AB) , KD vuông góc với AC ( D ∈ AC). Chứng minh rằng ∆KDE là tam giác cân. d) Chứng minh rằng DE//BC e) Trên tia đối của tia AB lấy điểm M sao cho AB = AM. Chứng minh răng MC vuông góc với BC
Bài 3: Cho ∆ABC vuông tại B. Trên tia đối của tia BC lấy điểm D sao cho BD = BC a) Chứng minh rằng 𝐵𝐴𝐶 ̂ = 𝐵𝐴𝐷 ̂ b) Tính độ dài CD biết AB = 4cm, AC = 5 cm c) Kẻ BE vuông góc với AC ( E ∈ AC); BH vuông góc với AD ( H ∈ AD). ∆HBE là tam giác gì? Tại sao? d) ∆ABC cần có thêm điều kiện gì để ∆HBE đều
Cho tam giác cân DEF (DE=DF) .Gọi M,N lần lượt là trung điểm của DF và DE.
a) chướng minh EM=FN và góc DEM = góc DFN
b)Gọi K là giao điểm của EM và FN .chứng minh KE=KF
C) chứng minh DK là tia phân giác của góc EDF
d) DK kéo dài cắt EK tại H . Chứng minh H là trung điểm của EF
e) chứng minh DH vuông góc EF
Cho tam giác ABC cân tại A, nội tiếp đường tròn tâm O. Gọi D là trung điểm của AB, E là trọng tâm tam giác ADC. Cmr OE vuông góc CD