Cho tam giác ABC có các đường phân giác BD; CE cắt nhau tại O. Qua A vẽ các đường vuông góc với BD và CE, chúng cắt BC theo thứ tự tại N và M. Gọi H là chân đường vuông góc kẻ từ O đến BC.
a) Chứng minh tam giác CAM cân.
b) Tam giác OMN cân.
c) Chứng minh rằng M đối xứng với N qua OH.
Chứng minh rằng : a2+b2+ 1/ a2+1/b2 > hoặc = 4
Cho a2+b2 +c2 -ab-ac-bc=0
Chứng minh a=b=c
Bài 8: a)Chứng minh rằng ( a + b + c)3- a3 – b3 – c3 = 3( a +b)(b +c)( c+ a)
b)a3 +b3 +c3 – 3abc = ( a + b + c)( a2 +b2 + c2)
Cho tam giác ABC nhọn có góc A=70 độ và điểm D thuộc cạnh BC. Gọi E là điểm đối xứng với D qua AB, gọi F là điểm đối xứng với D qua AC. Đường thẳng EF cắt AB, AC theo thứ tự M ; N.
a) AB cắt ED tại I, DF cát AC tại K.C/m tam giác AEI = tam giac ADI
b) Tính các góc của tam giác AEF
c) Chứng minh rằng DA là tia phân giác của ^MDN
d) Tìm vị trí của điểm D trên cạnh BC để tam giác DMN
có chu vi nhỏ nhất.
Bài tập: Cho a,b,x,y là những số khác 0. Biết rằng ( a2 + b2 ).( x2 + y2 ) = ( ax + by )2. Hãy tìm hệ thức giữa bốn số a,b,x,y.
Hãy tính diện tích hình vuông ABCD ( hình bên) theo hai cách để kết luận rằng
( a-b)2 = a2-2ab + b2
Cho tam giác ABC cân tại A . Lấy D trên AB , E trên AC sao cho AD = CE . Gọi I là trung điểm của DE , K là giao điểm của AI và BC . Chứng minh rằng : ADEK là hình bình hành
(1) (a+b−c)2=a2+b2+c2+2ab−2bc−2ac(a+b−c)2=a2+b2+c2+2ab−2bc−2ac
(3) a3+b3=(a+b)3−3ab(a+b)a3+b3=(a+b)3−3ab(a+b)
(5) (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)(a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)
(7) (a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)(a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)
(9) (a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc(a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc
(11) ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3