Cho tam giác nhọn ABC. Trên nửa mặt phẳng bờ AB ko chứa C,lấy D sao choAD=AB và AD vuông góc với AB. Trên nửa mặt phẳng bờ AC ko chứa B lấy E sao cho AE=AC và AE vuông góc với AC. Kẻ AH vuông góc với BC tại H. AH cắt DE tại K. Chứng minh K là trung điểm của DE
Cho tam giác ABC và M là trung điểm của cạnh BC. Trên nửa mặt phẳng bờ AB không chứa điểm C ta vẽ đoạn thẳng AD vuông góc AB và AD=AB. Trên nửa mặt phẳng AC không chứa điểm B ta vẽ đoạn thẳng AE vuông góc AC và AE=AC. Trên tia AM lấy điểm F sao cho M là trung điểm của AF.
a) Chứng minh tam giác MAC = tam giác MFB. Từ đó chứng minh AC = BF
b) Chứng minh tam giác ADE = tam giác BEF.
c) Chứng minh AM vuông góc DE.
d) Từ A kẻ đường thẳng vuông góc với BC cắt BC tại H, cắt DE tại K. Chứng minh K là trung điểm của BE.
Cho tam giác ABC , M là trung điểm của BC . TRên nửa mặt phẳng không chứa C có bờ AB , vẽ tia Ax vuông góc với AB . Trên tia đó lấy điểm D sao cho AD = AB . Trên nửa mặt phẳng không chứa B có bờ AC , vẽ tia Ay vuông góc với AC , trên tia đó lấy điểm E sao cho AE = AC . Chứng minh rằng :
a, AM = \(\frac{DE}{2}\)
b, AM vuông góc với DE
Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng không chứa C có bờ AB, vẽ tia Ax vuông góc với AB, trên tia đó lấy điểm D sao cho AD=AB. Trên nửa mặt phẳng không chứa B có bờ AC, vẽ tia Ay vuông góc với AC, trên tia đó lấy điểm E sao cho AE=AC. Chứng minh rằng: \(AM=\frac{DE}{2}\)
Cho tam giác ABC , M là trung điểm BC . Trên nửa mặt phẳng không chứa điểm C có bờ AB, vẽ tia Ax vuông góc AB . Trên tia đó lâý điểm D sao cho AD = AB . Trên nửa mặt phẳng không chứa B có bờ AC vẽ tia Ay vuông góc AC . Trên tia đó lấy điểm E sao cho AE = AC . Chứng minh:
a)AM = \(\frac{DE}{2}\)
b) AM vuông góc DE
c) DC vuông góc BE
Cho tam giác ABC có A nhọn . Trên nửa mặt phẳng bờ AC không chứa C . Vẽ tia Ax vuông góc với BC . Trên tia Ax lấy điểm D sao cho AD =AB . Trên nửa Mặt phẳng bờ AC không chứa điểm B. Vẽ tia Ay vuông góc với AC . Trên tia Ax lấy điểm E sao cho AE = AC . Gọi M là trung điểm của BC .
Chứng minh rằng : AM = \(\frac{1}{2}\) DE
1.cho tam giác ABC có góc A < 90 độ . trên nửa mặt phẳng bờ AB ko chứa điểm C ; vẽ tia Ax vuông góc với AB . trên tia Ax lấy điểm D sao cho AD = AB . trên nửa mặt phẳng bờ AB ko chứa điểm B vẽ tia Ay vuông AC , trên đó lấy điểm E sao cho AE = AC.gọi M là trung điểm BC.chứng minh AM=1/2DE
1.Cho tam giác ABC có AB = AC, kẻ BD vuông góc AC, CE vuông góc AB ( D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. Chứng minh:
a. BD = CE
b. tam giác OEB = tam giác ODC
c. AO là tia phân giác của góc BAC
2.Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng không chứa C bờ là AB vẽ AD vuông góc AB và AD = AB. Trên nửa mặt phẳng không chưa B bờ là AC vẽ AE vuông góc AC và AE = AC. Lấy F thuộc tia đối của tia MA cho MF = MA. CMR:
a. BF song song AC
b. DE = 2AM
c. AM vuông góc DE
Cho tam giác ABC có AB=AC. D là trung điểm của BC. E là trung điểm của AD. Qua E vẽ đường thẳng vuông góc với AD cắt AB tại M. CMR:
a, Tam giác ABD = Tam giác ACD.
b, AD vuông góc với BC.
c, Tam giác AME = Tam giác DME
d, Trên nửa mặt phẳng bờ AD có chứa điểm B, vẽ tia Ax song song với BC. Trên tia Ax lấy điểm H sao cho AH = BD. Cm ba điểm D,M,H thẳng hàng.
Vẽ hình và ghi cả giả thiết, kết luận và làm bài chi tiết giúp mk nha!!!