Cho tam giác ABC có góc A < 90 . Vẽ ra phía ngoài tam giác đó hai đoạn thẳng AD vuông góc và bằng AB , AE vuông góc và bằng AC . Gọi H là chân đường vuông góc kẻ từ A đến BC . Chứng minh rằng : Tia HA đi qua trung điểm của đoạn thẳng DE .
Cho tam giác ABC có \(\widehat{A}\) <90 độ. Vẽ ra phía ngoài tam giác đó hai đoạn thẳng AD vuông góc và bằng AB, AE vuông góc và bằng AC. Kẻ AH vuông góc với BC. CM: HA đi qua trung điểm DE
Cho \(\Delta\)ABC có \(\widehat{A}\)<90 độ. Vẽ ra phía ngoài tam giác đó 2 đoạn thẳng AD vuông góc và bằng AB ; AE vuông góc và bằng AC. Kẻ AH \(\perp\) BC. CM: HA đi qua trung điểm DE
Cho tam giác ABC và M là trung điểm của cạnh BC. Trên nửa mặt phẳng bờ AB không chứa điểm C ta vẽ đoạn thẳng AD vuông góc AB và AD=AB. Trên nửa mặt phẳng AC không chứa điểm B ta vẽ đoạn thẳng AE vuông góc AC và AE=AC. Trên tia AM lấy điểm F sao cho M là trung điểm của AF.
a) Chứng minh tam giác MAC = tam giác MFB. Từ đó chứng minh AC = BF
b) Chứng minh tam giác ADE = tam giác BEF.
c) Chứng minh AM vuông góc DE.
d) Từ A kẻ đường thẳng vuông góc với BC cắt BC tại H, cắt DE tại K. Chứng minh K là trung điểm của BE.
Cho ΔABC có góc A = 110o. M là trug điểm của BC. Trên tia đối của tia MA lấy điểm K sao cho MK = MA.
a) Tính góc ACK. (đã làm đc)
b) Vẽ về phía ngoài ΔABC các đoạn thẳng AD, AE sao cho AD vuông góc với AB và = AB, AE vuông góc với AC và = AC. CMR ΔCAK = ΔAED
c) CMR MA vuông góc với DE.
GIÚP NHÉ MN.
1. Cho tam giác ABC có góc B=50 độ. Từ A kẻ đường thẳng \\ vs BC cắt tia p/g của góc B ở E.
a) CM: ΔAEB là tam giác cân.
b) Tính góc BAE
2. cho tam giác ABC cân tại A. Trên cạnh AB và AC lấy tương ứng 2 điểm D và E sao cho AD= AE. Gọi M là trung điểm của BC. CMR:
a) DE\\BC
b) ΔMBD=ΔMCE
c)ΔAMD=ΔAME.
3.Cho tam giác ABC cân tại A. Gọi Am là tia phân giác góc ngoài tại đỉnh A của tam giác đó. CM Am\\BC.
4. Cho tam giác đều ABC. Trên tia đối của các tia AB,BC,CA lấy theo thứ tự ba điểm D,E,F sao cho AD=BE=CF. CM ΔDEF là tam giác đều.
( GIÚP MÌNH VỚI NHÉ!!! VẼ HÌNH VÀ TRÌNH BÀY CHI TIẾT NHÉ! MÌNH ĐANG CẦN GẤP! THANKS!!! ^_^)
Cho góc vuông xAy. Trên tia Ax lấy 2 điểm B và D, trên tia Ay lấy 2 điểm C và E sao cho AB = AC và AD = AE.
a) Chứng minh tam giác ACD và tam giác ABE bằng nhau
b) Chứng minh tam giác BOD và COE bằng nhau. Với Ola giao điểm của DC và BE.
c) Chứng minh AO vuông góc với DE
giúp mk
1.Cho tam giác ABC có AB = AC, kẻ BD vuông góc AC, CE vuông góc AB ( D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. Chứng minh:
a. BD = CE
b. tam giác OEB = tam giác ODC
c. AO là tia phân giác của góc BAC
2.Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng không chứa C bờ là AB vẽ AD vuông góc AB và AD = AB. Trên nửa mặt phẳng không chưa B bờ là AC vẽ AE vuông góc AC và AE = AC. Lấy F thuộc tia đối của tia MA cho MF = MA. CMR:
a. BF song song AC
b. DE = 2AM
c. AM vuông góc DE
Cho tam giác ABC , M là trung điểm BC . Trên nửa mặt phẳng không chứa điểm C có bờ AB, vẽ tia Ax vuông góc AB . Trên tia đó lâý điểm D sao cho AD = AB . Trên nửa mặt phẳng không chứa B có bờ AC vẽ tia Ay vuông góc AC . Trên tia đó lấy điểm E sao cho AE = AC . Chứng minh:
a)AM = \(\frac{DE}{2}\)
b) AM vuông góc DE
c) DC vuông góc BE