Cho đường tròn (O)(O) có ABAB là một dây cung cố định không đi quá OO . Từ một điểm MM bất kì trên cung lớn AB ( M ko trùng A và B ) kẻ dây cung MN vuông góc với AB tại H . Gọi MQ là đường cao của tam giác AMN. a)a) Chứng minh tứ giác AMHQ nội tiếp đường tròn b)b) Gọi I là giao điểm của AB và MQ chứng minh tam giác IBM cân .. c)c) Kẻ MP vuông góc với BN tại P . Xác định vị trí của M sao cho MQ . AN + MP . BN đạt giá trị lớn nhất
Cho nửa đường tròn (O) đường kính AB.Điểm M nằm trên nửa đường tròn (M≠A;B).Tiếp tuyến tại M cắt tiếp tuyến tại A và B của đường tròn (O) lần lượt là C và D.
a)CM:ACMO nội tiếp
b) CM:góc CAM=góc ODM
c)Gọi P là giao điểm CD và AB.CM:PA.PO=PC.PM
d)Gọi E là giao điểm của AM và BD;F là giao điểm của AC và BM.CM:E;F;P thẳng hàng
cho đường tròn tâm o P là điểm nằm ngoài đường tròn,Kẻ cát tuyến PAB ( A nằm giữa P và B ) của đường tròn O .Dựng 2 tiếp tuyến PE,PF với đường tròn O( E,F là các tiếp điểm F thuộc cung nhỏ AB).Gọi D là điểm nằm giữa cung lớn AB .GỌI I là giao điểm giữa 2 đường thẳng DF và AB .CMR IB. EA=IA.EB ( ai làm đc là thần đồng ko nói nhiều)
Độ dài các cạnh của một tam giác ABC vuông tại A, thỏa mãn các hệ thức sau :
\(BC=AB+2a\)
\(AC=\dfrac{1}{2}\left(BC+AB\right)\)
a là một độ dài cho trước
a) Tính theo a, độ dài các cạnh và chiều cao AH của tam giác
b) Tam giác ABC nội tiếp được trong nửa hình tròn tâm O. Tính diện tích của phần thuộc nửa đường tròn nhưng ở ngoài tam giác ssos
c) Cho tam giác ABC quay một vòng quanh cạnh huyền BC. Tính tỉ số diện tích giữa các phần do các dây cung AB và AC tạo ra
Cho nửa đường tròn ( O;R), đường kính AB , Bán kính CO vuông góc với AB , M là một điểm bất kì trên cung nhỏ AC ( M khác A,C) BM cắt AC tại H , K là hình chiếu của H trên AB a. Số đo cung nhỏ BC b.Chứng minh BCHK là tứ giác nội tiếp c. Trên đường thẳng BM lấy D sao cho BD = AM . Chứng minh CM vuông góc với CD Mong mn giúp mik mai mik thi gấp cận kề rồi :((
Cho hình vuông ABCD nội tiếp đường tròn tâm O, bán kính R và GEF là tam giác đều nội tiếp đường tròn đó, EF là dây song song với AB (h. 119). Cho hình đó quay xung quanh trục GO. Chứng minh rằng:
a) Bình phương thể tích của hình trụ sinh ra bởi hình vuông bằng tích của thể tích hình cầu sinh ra bởi hình tròn và thể tích hình nón do tam giác đều sinh ra.
b) Bình phương diện tích toàn phần của hình trụ bằng tích của diện tích hình cầu và diện tích toàn phần của hình nón.
Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A, BC là tiếp tuyến chung ngoài. B ∈ (O), C ∈ (O’). Tiếp tuyến chung trong tại A cắt BC ở điểm M. Gọi E là giao điểm của OM và AB, F là giao điểm của O’M và AC. Chứng minh rằng a) Tứ giác AEMF là hình chữ nhật. b) ME.MO = MF.MO’ c) OO’ là tiếp tuyến của đường tròn có đường kính là BC. d) BC là tiếp tuyến của đường tròn có đường kính là OO’.
cho đường tròn (o,R) . Từ một điểm M nằm ngoài đường tròn (O) , vẽ hai tiếp tuyến MA,MB đến (O) . Qua một điểm N nằm trên cung nhỏ AB vẽ tiếp tuyến thứ ba cắt hai tiếp tuyến trên tại P,S.
1, Chứng minh tứ giác OAMB nội tiếp.
2, Biết AMB= 60 , tính theo R:
a, Chu vi tam giác MPQ, độ dài đoạn AB.
b, Diện tích phần tứ giác OAMB nằm ngoài đường tròn (O)
Cho tam giác ABC có 3 góc nhọn, nội tiếp đường tròn (O) có bán kính R=3cm. Các tiếp tuyến với (O) tại B và C cắt nhau tại D.
1. Chứng minh tứ giác OBDC nội tiếp đường tròn
2. Gọi M là giao điểm của BC và OD. Biết OD = 5cm. Tính diện tích tam giác BCD
3. Kẻ đường thẳng d đi qua D và song song với đường tiếp tuyến với (O) tại A, d cắt các đường thẳng AB, AC lần lượt tại P và Q. Chứng minh AB.AP = AQ.AC
4. Chứng minh ∠PAD = ∠MAC