Cho tam giác ABC và M là trung điểm của cạnh BC. Trên nửa mặt phẳng bờ AB không chứa điểm C ta vẽ đoạn thẳng AD vuông góc AB và AD=AB. Trên nửa mặt phẳng AC không chứa điểm B ta vẽ đoạn thẳng AE vuông góc AC và AE=AC. Trên tia AM lấy điểm F sao cho M là trung điểm của AF.
a) Chứng minh tam giác MAC = tam giác MFB. Từ đó chứng minh AC = BF
b) Chứng minh tam giác ADE = tam giác BEF.
c) Chứng minh AM vuông góc DE.
d) Từ A kẻ đường thẳng vuông góc với BC cắt BC tại H, cắt DE tại K. Chứng minh K là trung điểm của BE.
Cho tam giác ABC có góc A = 110 độ, các đường trung trực của AB và AC cắt cạnh BC theo thứ tự ở E và F. Tính góc EAF.
1. Cho tam giác ABC có góc B=50 độ. Từ A kẻ đường thẳng \\ vs BC cắt tia p/g của góc B ở E.
a) CM: ΔAEB là tam giác cân.
b) Tính góc BAE
2. cho tam giác ABC cân tại A. Trên cạnh AB và AC lấy tương ứng 2 điểm D và E sao cho AD= AE. Gọi M là trung điểm của BC. CMR:
a) DE\\BC
b) ΔMBD=ΔMCE
c)ΔAMD=ΔAME.
3.Cho tam giác ABC cân tại A. Gọi Am là tia phân giác góc ngoài tại đỉnh A của tam giác đó. CM Am\\BC.
4. Cho tam giác đều ABC. Trên tia đối của các tia AB,BC,CA lấy theo thứ tự ba điểm D,E,F sao cho AD=BE=CF. CM ΔDEF là tam giác đều.
( GIÚP MÌNH VỚI NHÉ!!! VẼ HÌNH VÀ TRÌNH BÀY CHI TIẾT NHÉ! MÌNH ĐANG CẦN GẤP! THANKS!!! ^_^)
1.Cho tam giác ABC có AB = AC, kẻ BD vuông góc AC, CE vuông góc AB ( D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. Chứng minh:
a. BD = CE
b. tam giác OEB = tam giác ODC
c. AO là tia phân giác của góc BAC
2.Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng không chứa C bờ là AB vẽ AD vuông góc AB và AD = AB. Trên nửa mặt phẳng không chưa B bờ là AC vẽ AE vuông góc AC và AE = AC. Lấy F thuộc tia đối của tia MA cho MF = MA. CMR:
a. BF song song AC
b. DE = 2AM
c. AM vuông góc DE
Cho tam giác ABC có AB = AC. Lấy điểm M là trung điểm của BC.
a) Chứng minh tam giác ABM = tam giác ACM.
b) Chứng minh AM là đường trung trực của BC.
c) Từ M vẽ MH vuông góc với AC tại H. Trên tia đối của tia HM lấy điểm E sao cho H là trung điểm của ME. Chứng minh CA là tia phân giác của góc MCE.
d) Đường thẳng đi qua M và song song với CE cắt AE tại P. Chứng minh MP vuông góc với AE.
Bài 1: Cho tam giác ABC có góc B=50 độ. Từ đỉnh A kẻ đường thẳng song song với BC cắt tia phân giác của góc B ở E.
a/ CM: Tam giác ABC cân.
b/ Tính góc BAE.
Bài 2: Cho tam giác cân ABC (AB=AC). Trên các cạnh AB và AC lấy tương ứng 2 điểm D và E sao cho AD=AE. Gọi M là trung điểm của BC. CMR:
a/ DE song song BC
b/ Tam giác MBD=tam giác MCE
c/ Tam giác AMD=tam giác AME
Cho tam giác ABC có 3 góc đều nhọn và đường cao AH. Dựng điểm D sao cho AB là đường trung trực của đoạn thẳng HD rồi dựng điểm E sao cho AC là đường trung trực của đoạn thẳng HE. Nối DE cắt AB ở I và cắt AC ở K. CMR:
a) AD=AE
nếu biết thì cm luôn
Tia HA là tia pg của góc IHK
Áp dụng : Trường hợp bằng nhau thứ 2 của tam giác
Cho tam giác ABC nhọn , vẽ AH vuông góc BC tại H . Dựng điểm D sao cho AB là đường trung trực của HD . Dựng điểm E sao cho AC là đường trung trực của HỆ . ĐỂ cắt AB ở I cắt AC ở K
Chứng minh a,AD = AE
b, HA là tia phân giác của IHK
Cho tam giác nhọn ABC. Trên nửa mặt phẳng bờ AB ko chứa C,lấy D sao choAD=AB và AD vuông góc với AB. Trên nửa mặt phẳng bờ AC ko chứa B lấy E sao cho AE=AC và AE vuông góc với AC. Kẻ AH vuông góc với BC tại H. AH cắt DE tại K. Chứng minh K là trung điểm của DE