Hình học lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hết Hy Vọng

Cho tam giác ABC có AB<AC.trên cạnh AC lấy điểm D sao cho AD=AB gọi M là trng điểm của BD

a) chứng minh tam giác ABM=tam giác ADM

b)chứng minh AM vuông góc BD

c)tia AM cắt AC tại K.cm tam giác ABK=tam giác ADK

d) trên tia đói của tia BA lấy điểm F,sao cho BF=DC.cm F,K,D thẳng hàng

Hoàng Thị Ngọc Anh
30 tháng 6 2017 lúc 10:18

A B M D C K F

a) Xét \(\Delta ABM;\Delta ADM:\)

AM chung

\(AB=AD\left(gt\right)\)

\(BM=DM\) (suy từ gt)

\(\Rightarrow\Delta ABM=\Delta ADM\left(c.c.c\right)\)

b) Vì \(AB=AD\Rightarrow\Delta ABD\) cân tại A (1)

Do \(\Delta ABM=\Delta ADM\Rightarrow\widehat{BAM}=\widehat{DAM}\)

\(\Rightarrow AM\) là tia pg của \(\widehat{BAD}\) (2)

Kết hợp (1); (2) \(\Rightarrow AM\) là đg cao của \(\Delta ABD\)

\(\Rightarrow AM\perp BD.\)

c) Xét \(\Delta ABK;\Delta ADK:\)

AB = AD (gt)

\(\widehat{BAK}=\widehat{DAK}\)

AK chung

\(\Rightarrow\Delta ABK=\Delta ADK\left(c.g.c\right)\)

d) Lại do \(\Delta ABK=\Delta ADK\left(c\right)\)

\(\Rightarrow BK=DK\) (3) và \(\widehat{ABK}=\widehat{ADK}\)

Ta có: \(\widehat{ABK}+\widehat{KBF}=\widehat{ADK}+\widehat{KDC}\) (cùng t/c kề bù)

\(\Rightarrow\widehat{KBF}=\widehat{KDC}\) (4)

mà BF = DC (gt) (5)

Từ \(\left(3\right);\left(4\right);\left(5\right)\Rightarrow\Delta KBF=\Delta KDC\left(c.g.c\right)\)

Từ đó c/m tiếp được: F, K, D thẳng hàng.


Các câu hỏi tương tự
Thu Trang
Xem chi tiết
Nguyễn Thị Thúy
Xem chi tiết
ngoc an
Xem chi tiết
Nguyễn Minh Anh
Xem chi tiết
Nguyễn Minh Anh
Xem chi tiết
Nguyễn Hà Phương
Xem chi tiết
Tớ cuồng xô
Xem chi tiết
Quên Mất Tên Rồi
Xem chi tiết
nguyen thi thao
Xem chi tiết