Chương II : Tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phương Quyên

cho tam giác ABC có AB=AC 

Gọi I là trung điểm của cạnh BC. a) Chứng minh tam giác ABI=ACI. b) Gọi M là trung điểm của cạnh AC.Trên tia đối của tia MB lấy điểm E sao cho EM=MB.Chứng minh EA vuông góc với AI.
nguyễn khắc quang vinh
24 tháng 12 2020 lúc 20:32

a, Xét △ABI và △ACI có : AB = AC (gt) BI = CI (do I là trung điểm BC) AI chung => △ABI = △ACI (c-c-c) b, Xét △AIC và △DIB có : AI = DI (gt) \widehat{AIC}=\widehat{DIB} AIC = DIB (đối đỉnh) IC = IB => △AIC = △DIB (c-g-c) => \widehat{DBI}=\widehat{ICA} DBI = ICA (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => AC // BD c, Xét △IKB và △IHC có : \widehat{IKB}=\widehat{IHC}=90^O IKB = IHC =90 O IB = IC \widehat{KIB}=\widehat{CIH} KIB = CIH (đối đỉnh) => △IKB = △IHC (ch-gn) => IK = IH