Do C thuộc trục Oy nên tọa độ có dạng \(C\left(0;c\right)\)
Áp dụng công thức trọng tâm:
\(\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{4}{3}\\y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{c-2}{3}\end{matrix}\right.\)
Do G thuộc Ox \(\Rightarrow y_G=0\Rightarrow\dfrac{c-2}{3}=0\Rightarrow c=2\)
\(\Rightarrow C\left(0;2\right)\)