Lấy trung điểm M của cạnh BC. Gọi H là hình chiếu của M lên DE.
Xét \(\Delta\)BEC:\( \widehat{BEC}\) = 900; M là trung điểm BC => \(EM = \dfrac{1}{2}.BC\)
Xét \(\Delta\)BDC: \( \widehat{BDC}\) = 900; M là trung điểm BC => \(DM = \dfrac{1}{2}.BC\)
=> EM = DM => \(\Delta\)EMD cân tại M . Do MH là đường cao \(\Delta\)EMD
=> MH cũng là đường trung tuyến => H là trung điểm DE => HD = HE (1)
Xét tứ giác BFKC: BF // CK (Cúng vuông DE) => Tứ giác BFKC là hình thang (vuông)
Ta có: BF; CK; MH cùng vuông DE => MH // BF // CK
Xét hình thang BFKC: M là trung điểm BC; MH // BF // CK; H thuộc FK
=> H là trung điểm FK => HF = HK (2)
Từ (1) và (2) => HF - HE = HK - HD => EF = DK (đpcm).