Cho tam giác ABC , trung tuyến AM. Chứng minh AB^2+AC^2=2AM^2+BC^2/2
Cho tam giác ABC vuông tại A, vẽ đường cao AH của tam giác ABC (H thuộc BC).
1) Nếu sin ACB = 3/5 và BC = 20 cm. Tính các cạnh AB, AC, BH và góc ACB (số đo góc làm tròn đến độ)
2) Đường thẳng vuông góc với BC tại B cắt đường thẳng AC tại D. Chứng minh: AD.AC = BH.BC.
3) Kẻ tia phân giác BE của DBA ( E thuộc đoạn DA). Chứng minh: tan EBA = AD/AB + BD
4) Lấy điểm K thuộc đoạn AC, Kẻ KM vuông góc với HC tại M, KN vuông góc với AH tại N. chứng minh : NH.NA+MH.MC=KA.KC
Cho tam giác ABC nhọn (AB<AC) có hai đường cao BD và CE cắt nhau tại H1) Chứng minh bốn điềm B E D C cừng thuộc một đường tròn.2) Gọi I là trung điểm của BC, K là điểm đối xứng với H qua I. Chứng minh tam giác ACK là tam giác vuông.3) CHứng minh: BE.BA + CD.CA=4IC2
Cho tam giác ABC vuông tại A ( AB < AC ) có đường cao AH và AH = 12 cm , BC = 25 cm
a) Tính độ dài BH ,CH ,AB ,AC
b) Vẽ trung tuyến AM . Tìm số đo của góc AMH
c) Tính diện tích của tam giác AHM
Giúp mình với cố xong trước 9h nhé
Cho tam giác ABC vuông tại A (AB<AC)đường cao AH (H thuộc BC)
a)Cho AB = 9cm, AC = 12cm. Tính AH,BH,tạc
b)Từ H kẻ HD vuông góc AB tại D, HE vuông góc AC tại E. Chứng minh HD.AB+HE.AC=AB.AC
c)Gọi M là trung điểm BC, AM cắt DE tại I. Chứng minh 1/AI²=1/AD²+1/AE²
Cho tam giác ABC vuông tại A, đường cao AE. Gọi I là trung điểm AB. Vẽ IH vuông góc với BC tại h
a) Chứng minh \(\dfrac{1}{4IH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
b) Chứng minh AC2 + BH2 = CH2
Trong tam giác ABC vuông tại A có đường cao AH : AB = c, AC = b, BC = a, AH = h, BH = c', CH = b'
Chứng minh rằng :
a) \(h=\dfrac{bc}{a}\)
b) \(\dfrac{b^2}{c^2}=\dfrac{b'}{c'}\)
Cho tam giác ABC vuông tại A,kẻ đường cao AH AB=3cm,AC=4cm a)tính BC,AC b)tính góc BAH c)Chứng MINH BH=CH.tan2B
1) tam giác ABC góc A=90° đường cao AH tính sinB sinC trong mỗi trường hợp sau
a) AB=13cm, BH=5cm
b) BH=0,3dm , CH=4cm
2) tam giác nhọn ABC các đường cao BD và CE chứng minh ADE=ABC
3) tam giác nhọn ABC biết AB=c, AC=b ,BC=a chứng minh a phần sinA bằng b phần sinB bằng c phần sinC