Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H ( D,E,F lần lượt thuộc các cạnh BC, CA, AB). CMR:
a, AF.AB = AH.AD = AE.AC
b, H là giao điểm 3 đường phân giác trong tam giác DEF.
c, Gọi M,N,P,I,K,Q lần lượt là trung điểm của các cạnh BC, AC, AB, EF, ED, DF. CMR:
các đường thẳng MI, NQ, PK đồng quy
d, Gọi độ dài các đoạn thẳng AB, BC, CA lần lượt là a,b,c. Độ dài các đoạn thẳng AD, BE, CF là a', b', c'. Tìm GTNN của biểu thức \(\frac{\left(a+b+c\right)^2}{a'^2+b'^2+c'^2}\)