chứng minh nếu tam giác ABC có 3 góc A , B , C và 3 cạnh a , b , c thỏa mãn đẳng thức sau thì tam giác ABC vuông : \(\frac{b}{\cos B}\) + \(\frac{c}{\cos C}\) = \(\frac{a}{\sin B.\sin C}\)
Trắc nghiệm: Ghi đầy đủ lời giải và đáp án cho câu hỏi sau:
Cho tam giác ABC thỏa mãn \(b^2+c^2-a^2=\sqrt{3}bc\). Khi đó góc A bằng bao nhiêu độ?
\(A.\widehat{A}=30^o\)
\(B.\widehat{A}=45^o\)
\(C.\widehat{A}=60^o\)
\(D.\widehat{A}=75^o\)
chứng minh nếu tam giác ABC có 3 góc A , B , C và 3 cạnh a , b , c thỏa mãn đẳng thức sau thì tam giác ABC vuông : \(\frac{b}{\cos B}\) + \(\frac{c}{\cos C}\) = \(\frac{a}{\sin B\times\sin C}\)
chứng minh nếu tam giác ABC có 3 góc A , B , C và 3 cạnh a , b , c thỏa mãn đẳng thức sau thì tam giác ABC vuông : \(\frac{b}{\cos B}\) + \(\frac{c}{\cos C}\) = \(\frac{a}{\sin B\times\sin C}\)
chứng minh nếu tam giác ABC có 3 góc A , B , C và 3 cạnh a , b , c thỏa mãn đẳng thức sau thì tam giác ABC vuông : \(\frac{b}{\cos B}\) + \(\frac{c}{\cos C}\) = \(\frac{a}{\sin B\times\sin C}\)
Cho tam giác ABC có b = 6cm, c = 4cm, góc A = 60 độ. Tính cạnh a, bán kính đường tròn ngoại tiếp tam giác ABC, đường cao Bh của tam giác ABC
Tam giác ABC có \(a=2\sqrt{3};b=2\sqrt{2};c=\sqrt{6}-\sqrt{2}\). Tính các góc A, B và các độ dài \(h_a,R,r\) của tam giác đó ?
Cho tam giác ABC, AC=8, BC=12, góc C=106 độ. Tính AB, góc A, góc B
Cho tam giác ABC biết a=2\(\sqrt{3}\), b=2\(\sqrt{2}\), c=\(\sqrt{6}\) -\(\sqrt{2}\) .Tính góc lớn nhất của tam giác.