Giải:
a) Ta có: \(BD=CE\left(gt\right)\)
\(\Rightarrow BD+BC=CE+BC\)
\(\Rightarrow DC=BE\)
Xét \(\Delta ACD,\Delta ABE\) có:
DC = BE ( cmt )
\(\widehat{C_1}=\widehat{B_1}\) ( do t/g ABC cân tại A )
AC = AB ( do t/g ABC cân tại A )
\(\Rightarrow\Delta ACD=\Delta ABE\left(c-g-c\right)\)
\(\Rightarrow AD=AE\) ( cạnh t/ứng )
\(\Rightarrow\Delta ADE\) cân tại A ( đpcm )
b) Ta có: BD = CE ( gt )
MB = MD ( gt )
\(\Rightarrow BD+BM=CE+MC\)
\(\Rightarrow DM=EM\)
Xét \(\Delta DAM,\Delta EAM\) có:
DM = EM ( cmt )
AM: cạnh chung
AD = AE ( t/g ABC cân tại A )
\(\Rightarrow\Delta DAM=\Delta EAM\left(c-c-c\right)\)
\(\Rightarrow\widehat{DAM}=\widehat{EAM}\) ( góc t/ứng )
\(\Rightarrow\)AM là tia phân giác \(\widehat{DAE}\) ( đpcm )
c) Xét \(\Delta HBD,\Delta KCE\) có:
\(\widehat{DHB}=\widehat{EKC}=90^o\)
BD = CE ( gt )
\(\widehat{D}=\widehat{E}\) ( t/g ADE cân tại A )
\(\Rightarrow\Delta HBD=\Delta KCE\) ( c.huyền - g.nhọn )
\(\Rightarrow BH=CK\) ( đpcm )
Vậy...