a. xét tam giác ABH và tam giác ACH
AB = AC ( ABC cân )
góc B = góc C ( ABC cân )
BH = CH ( ABC cân, AH là đường cao cũng là trung tuyến )
Vậy tam giác ABH = tam giác ACH ( c.g.c )
b. xét tam giác vuông BNH và tam giác vuông CNH
BN = CM ( AB = AC ; AM = AN )
BH = CH
Vậy tam giác vuông BNH = tam giác vuông CNH ( cạnh huyền. cạnh góc vuông )
c. áp dụng định lý pitao vào tam giác vuông AHB:
\(AB^2=AH^2+BH^2\)
\(BH=\sqrt{10^2-8^2}=\sqrt{64}=8cm\)
=> BC = BH. 2 = 8.2 =16 cm
Chúc bạn học tốt!!!
a, Xét tam giác ABH và tam giác ACH
^AHB = ^AHC = 900
AB = AC (gt)
AH _ chung
Vậy tam giác ABH = tam giác ACH ( ch - cgv )
b, Xét tam ANB và tam giác AMC có :
^A _ chung
AM = AN(gt)
AB = AC (gt)
Vậy tam giác ANB = tam giác AMC ( c.g.c )
=> BN = CM ( 2 cạnh tương ứng )
c, Xét tam giác ABH vuông tại H, theo định lí Pytago
\(BH=\sqrt{AB^2-AH^2}=6cm\)
Xét tam giác ABC cân tại A có AH là đường cao nên đồng thời AH là đường trung tuyến
=> BC = 2BH = 12 cm
a, ΔABC cân tại A =>AB=AC và ACH=ABH
Xét ΔABH và ΔACH có:
ACH=ABH
AB=AC
AHC=AHB=900
=>ΔABH=ΔACH(cạnh huyền-góc nhọn) (đpcm)
b, Ta có AM+MB=AN+NC và AM=AN
=>MB=NC
Xét ΔBMC và ΔCNB có:
BM=NC
MBC=NCB
BC chung
=>ΔBMC=ΔCNB(c.g.c)
=>BN=CM (đpcm)
c, Xét ΔABH có: AB2=BH2+AH2 (pi-ta-go)
=>BH2=36
=>BH=6(cm)
ΔABC cân tại A có AH là đường cao
=> AH cũng là trung tuyến
=>HB=HC=BC/2
=>BC=2HB=12 (cm)