Cho tam giác ABC cân ở A. Gọi D, E, F lần lượt là trung điểm của BC, CA, AB. Trên tia đối của tia FC lấy điểm H sao cho F là trung điểm của CH. Các đường thẳng DE và AH cắt nhau tại I. Chứng minh rằng:
a) BDIA là hình bình hành và BDIH là hình thang cân
b) F là trọng tâm của tam giác HDE
Bài 1: Cho tam giác ABC cân ở A. Gọi D, E, F lần lượt là trung điểm của BC, CA, AB. Trên tia đối của tia FC lấy điểm H sao cho F là trung điểm của CH. Các đường thẳng DE và AH cắt nhau tại I. CMR
a) BDIA là hình bình hành và BDIH là hình thang cân
b) F là trọng tâm của tam giác HDE.
Bài 2: Cho hình bình hành ABCD, O là giao điểm của hai đường chéo. E, F, H lần lượt là trung điểm của AB, BC, OE.
a) Chứng minh: AF cắt OE tại H.
b) DF, DE lần lượt cắt AC tại K, L. Chứng minh: AL = LK = KC
c) BK cắt DC ở M. Chứng minh: E, O, M thẳng hàng
: Cho tam giác ABC, hai đường trung tuyến BM, CN cắt nhau tại G. Gọi E, F lần lượt là trung điểm của GB và GC. a) Chứng minh tứ giác BCMN là hình thang; b) Chứng minh tứ giác EFMN là hình bình hành. c) Nếu tam giác ABC cân tại A có o A 50 thì tứ giác BCMN là hình gì? Tính các góc của tứ giác BCMN
Cho tam giác ABC cân tại A.Gọi D, E,F lần lượt là trung điểm của AB, BC,CA.
a, CM: DE là đường trung bình của tam giác ABC.Tính BE biết BC=8cm
b,Cm: tam giác DECF là hình bình hành
c,Gọi H là điểm đối xứng với điểm F qua điểm D. CM tam giám AHBF là hình chữ nhật.
cho tam giác ABC vuông cân tại A. Trên đoạn thằng AB lấy điểm E, trên tia đối của tia CA lấy điểm F sao cho BE=CF. Vẽ hình bình hành BEFD. Gọi I là giao điểm của EF và BC. Qua E kẻ đường thẳng vuông góc với Ab cắt BI tại K
a. cmr tứ giác EKFC là hình bình hành
b. qua I kẻ đường thẳng vuông góc với AF cắt BD tại M. cmr: AI=BM
c. cmr C đối xứng với D qua MF
Cho tam giác ABC có E,F,D lần lượt là trung điểm AB, BC và CA. Chứng minh: a) tứ giác BFED là hình bình hành. b) Trên tia đối của tia FD lấy điểm M sao cho FD=FM. Chứng minh tứ giác ABDM là hình bình hành. c) Chứng minh tứ giác AMCD là hình bình hành.
Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm của BC, CD. AM, AN lần lượt cắt BD tại E, F. Chứng minh rằng:
a)E,F lần lượt là trọng tâm của các tam giác ABC và ACD
b)EB=EF=DF
Bài 3: Cho tứ giác MNPQ có hai đường chéo cắt nhau tại E. Gọi F là trung điểm của NP. Lấy điểm H đối xứng với E qua F. Chứng minh rằng: a) Tứ giác ENHP là hình bình hành. b) Tứ giác NHPQ là hình thang.
Cho tam giác abc nhọn(ab<ac),Gọi D và E lần lượt là trung điểm của Ab và AC
a) Chứng Minh tứ gics BDEC là hình thang
b)Qua D kẻ Dx song song với AC cắt BC tại F,gọi G là trung điểm của DC.CM:3 điểm E;G;F thẳng hàng
c)Gọi H là giao điểm của BG và DF,AH cắt GF tại I.CM:H là trọng tâm tam giác BDC và BI // CD