Cho tam giác ABC và M là trung điểm của cạnh BC. Trên nửa mặt phẳng bờ AB không chứa điểm C ta vẽ đoạn thẳng AD vuông góc AB và AD=AB. Trên nửa mặt phẳng AC không chứa điểm B ta vẽ đoạn thẳng AE vuông góc AC và AE=AC. Trên tia AM lấy điểm F sao cho M là trung điểm của AF.
a) Chứng minh tam giác MAC = tam giác MFB. Từ đó chứng minh AC = BF
b) Chứng minh tam giác ADE = tam giác BEF.
c) Chứng minh AM vuông góc DE.
d) Từ A kẻ đường thẳng vuông góc với BC cắt BC tại H, cắt DE tại K. Chứng minh K là trung điểm của BE.
Bài 5: Cho tam giác ABC cân tại A. Vẽ AH vuông góc BC tại H.
a/ Chứng minh tam giác AHB bằng tam giác AHC và BH = HC.
b/ Cho biết AB = 13cm; BC = 10cm. Vẽ trung tuyến BM của tam giác ABC cắt AH tại G. Tính AH và AG.
c/ Vẽ trung tuyến CN của tam giác ABC. Chứng minh MN song song BC.
d/ Trên cạnh AB lấy điểm D (D nằm giữa N và B) và trên tia đối tia CA lấy điểm E sao cho BD = CE. Đường thẳng qua C song song với DE và đường thẳng qua D song song với AC cắt nhau tại F. Chứng minh tam giác DFB cân và FC > BC
cho tam giác abc vuông cân tại a có ab>ac trên cạnh ba lấy điểm d sao cho bd=ác trên đường vuông góc với ab tại b lấy điểm f sao cho bf=ad chứng minh rằng tam giác bdf=tam giác acd và chứng minh rằng tam giác cdf là tam giác vuông
cho tam giác abc vuông cân tại a có ab>ac trên cạnh ba lấy điểm d sao cho bd=ác trên đường vuông góc với ab tại b lấy điểm f sao cho bf=ad chứng minh rằng tam giác bdf=tam giác acd và chứng minh rằng tam giác cdf là tam giác vuông
Cho tam giác ABC vuông tại A và AB nhỏ hơn AC. Trên cạnh AC lấy điểm D sao cho AD = AB. Vẽ tia phân giác góc BAC cắt BC tại E.
a) Chứng minh tam giác AEB = tam giác AED
b) Gọi F là giao điểm của DE và tia AB. Chứng minh tam giác EBF = tam giác EDC
c) Gọi M là trung điểm của BD, chứng minh tam giác AMB = tam giác AMD
d) Chứng minh 3 điểm A, M, E thẳng hàng.
Cho tam giác ABC có AB < AC. Trên cạnh AC lấy D sao cho AD = AB. Tia AD của góc A cắt BC tại E.
a ) chứng minh tam giác ABE = tam giác ADE
b ) gọi giao điểm của BD và AE là H
c ) Qua C kẻ đường thẳng song song với BD,cắt AD tại F. Chứng minh 3 điểm F;E;D thẳng hàng
Cho tam giác ABC có AB < AC. Trên cạnh AC lấy D sao cho AD = AB. Tia AD của góc A cắt BC tại E.
a ) chứng minh tam giác ABE = tam giác ADE
b ) gọi giao điểm của BD và AE là H
c ) Qua C kẻ đường thẳng song song với BD,cắt AD tại F. Chứng minh 3 điểm F;E;D thẳng hàng
1. Cho tam giác ABC có góc A bằng 90 độva AB=AC .Qua A kẻ đường thẳng d sao cho BC nằm cùng phía đối với d .Kẻ BD và CE vuông góc với d(DE thuộc d)
Chứng minh rằng BD=AEvà AD=CE
2. Cho tam giác ABC nhọn . Gọi M là trung điểm của cạnh AC . Trên tia đối MB lấy D sao cho MD=MB.
a.Chứng minh :t/g ABM=t/g CDM
b. Chứng minh :AD//BC
c. Gọi N là trung điểm của BC đường thẳng NM cắt AD tại E Chứng minh M là trung điểm của NE
Giups minh nhé các bạn!
1. Cho tam giác ABC có góc A bằng 90 độva AB=AC .Qua A kẻ đường thẳng d sao cho BC nằm cùng phía đối với d .Kẻ BD và CE vuông góc với d(DE thuộc d)
Chứng minh rằng BD=AEvà AD=CE
2. Cho tam giác ABC nhọn . Gọi M là trung điểm của cạnh AC . Trên tia đối MB lấy D sao cho MD=MB.
a.Chứng minh :t/g ABM=t/g CDM
b. Chứng minh :AD//BC
c. Gọi N là trung điểm của BC đường thẳng NM cắt AD tại E Chứng minh M là trung điểm của NE
Giups minh nhé các bạn!