Giải:
Hai tam giác vuông BID và BIE có:
BI là cạnh chung
=(gt)
nên ∆BID=∆BIE.
(cạnh huyền - góc nhọn)
Suy ra ID=IE (1)
Tương tự ∆CIE=CIF(cạnh huyền góc nhọn).
Suy ra: IE =IF (2)
Từ (1)(2) suy ra: ID=IE=IF
Giải:
Hai tam giác vuông BID và BIE có:
BI là cạnh chung
=(gt)
nên ∆BID=∆BIE.
(cạnh huyền - góc nhọn)
Suy ra ID=IE (1)
Tương tự ∆CIE=CIF(cạnh huyền góc nhọn).
Suy ra: IE =IF (2)
Từ (1)(2) suy ra: ID=IE=IF
cho tam giác ABC. các tia phân giác của các góc B và c cẮt nhau ở I. vẽ ID vuông góc với AB ( D thuộc AB), IE vuôn góc với BC (E thuộc BC), IF vuông góc vs AC (F thuộc AC). Chứng minh ID=IE=IF
Cho tam giác ABC. Các tia phân giác của các góc B và C cắt nhau ở I. Vẽ ID vuông góc với AB (D thuộc AB), IE vuông góc với BC(E thuộc BC), IF vuông góc với AC(F thuộc AC). Chưng minh ID=IE=IF
Cho tam giác ABC. Các tia phân giác của các góc B và C cắt nhau ở I. Vẽ ID vuông góc với AB (D thuộc AB), IE vuông góc với BC ( E thuộc BC), IF vuông góc với AC ( F thuộc AC). Chung minh ID = IE = IF
Cho ΔABC (AB#AC),tia Ax đi qua trung điểm M củaBC.Kẻ BE và CFvuông góc với Ax(E thuộc Ax,F thuộcAx) . Sô sánh độ dài BEvà CF.
Cho tam giác ABC.Các tia phân giác của các góc B và C cắt nhau ở I. Vẽ ID vuông góc với AB (d thuộc BC), IF vuông góc với AC(F thuộc AC).CM: ID=IE=IF
Cho tam giác ABC có góc A=60 độ. Tia phân giác của góc B cắt AC ở D, tia phân giác của góc C cắt AB ở E. Các tia phân giác đó cắt nhau ở I. Chứng minh rằng ID=IE.
Cho tam giác ABC. Các tia phân giác của góc A và góc B cắt nhau ở I. Kẻ ID \(\perp\) AB và IE \(\perp\) AC, IF \(\perp\) BC. ( D \(\in\) AB, E \(\in\) AC, F \(\in\) BC )
a) Chứng minh : \(\Delta BID=\Delta BIF\)
b) Chứng minh : ID = IE = IF.
Cho tam giác ABC .Qua điểm A vẽ AH vuông góc với BC (H THUỘC BC).Từ điểm H vẽ HK vuông góc với AC (K Thuộc C).qua Kvẽ đường thẳng m song song với BC cắt AB tại E . a,Các cặp tam giác nào bằng nhau ? b,AH vuông góc EK? c,Qua A vẽ đừng thẳng m vuông góc với AH .Chứng minh m song song với EK
1. Tính góc B và góc C của tam giác ABC biết:
a, Góc A= 70*, góc B - góc C=10*
B, Góc A= 60*, góc B-góc C =2gocC
2.Tính các góc của tam giác ABC. Biết góc A: góc B: góc C=2:3:4
3. Cho góc xOy; điểm A thuộc tia Ox. Kẻ AB vuông góc với Ox (B thuộc Oy). Kẻ BC thuộc Oy (C thuộc Oy). Kẻ CD vuông góc với Ox (D thuộc Oy).
a, Tìm các tam giác vuông trong hình vẽ
b, Tìm góc = góc AOB
4. Cho tam giác ABC có góc B = 110*, góc C= 30*. Gọi Ax là tia đối của tia AC. Tia phân giác của góc BAx cắt đường thẳng BC tại K. Chứng minh tam giác KAB có 2 góc bằng nhau.
1.Cho tam giác ABC có AB = AC, kẻ BD vuông góc AC, CE vuông góc AB ( D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. Chứng minh:
a. BD = CE
b. tam giác OEB = tam giác ODC
c. AO là tia phân giác của góc BAC
2.Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng không chứa C bờ là AB vẽ AD vuông góc AB và AD = AB. Trên nửa mặt phẳng không chưa B bờ là AC vẽ AE vuông góc AC và AE = AC. Lấy F thuộc tia đối của tia MA cho MF = MA. CMR:
a. BF song song AC
b. DE = 2AM
c. AM vuông góc DE