Cho∆ABC có AB<AC tia phân giác của góc A cắt BC tại D.Trên tia AC lấy điểm E sao cho BA=AE.
a) chứng minh tam giác BDE là tam giác cân.
b) gọi I là giao điểm của BE và AD. Từ B kẻ đường thẳng song song DE cắt AD tại F. Chứng minh BE là phân giác của góc DBF. Từ đó suy ra I là trung điểm của DF
c) chứng minh BD<DC
cho tam giác ABC vuông tại A (AB<AC) tia phân giác của góc B cắt AC tại D trên cạnh BC lấy điểm E sao cho BE =BA vẽ AH vuông góc với BC tại H
a chứng minh tam giác ABD = tam giác EBD và AD = ED
b chứng minh AH song song với DE
Cho tam giác ABC vuông tại a đường cao AH .trên tia BC lấy D sao cho BD = BA .đường vuông góc với BC tại D cắt AC tại E , cắt ba tại F. Chứng minh: a) tam giác ABE = tâm giác DBE b) BE là đường trung trực của đoạn AD c) HD < DC
Cho ABC vuông tại A có AB < AC, Trên cạnh BC lấy điểm D sao cho BA = BD. Từ D kẻ DE BC (E AC), Đường thẳng DE cắt đường thẳng AB tại M. Chứng minh rằng
a) Tam giác ABE = Tam giác DBE
b) BE Vuông Góc AD
c) Tam giác MBC cân
Cho tam giác ABC có góc A=120độ phân giác AD kẻ DE vuông góc với AB,DE vuông góc với AC trên các đoạn thẳng BE và CF đặt EK=FI
a,CM tam giác DEF là tam giác đều
b ,CM tam giác DIK là tam giác cân
c,Từ C kẻ đường thẳng song song vs AD cắt BA ở M.CM tam giác AMC là tam giác đều
d,Tính độ dài đoạn thẳng AD theo CM=m,CF=n
Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC tại E. Từ E kẻ ED vuông góc với BC tại D.
a, Chứng minh tam giác ABE= tam giác DBE.
b, Chứng minh BE là đường trung trực của đoạn thẳng AD.
c, Kẻ AH vuông góc với BC (H thuộc BC). Chứng minh AD là tia phân giác của góc BAD
d, Gọi K là giao điểm của AH và BE. Chứng minh rằng DK song song với AC
Cho tam giác ABC cân tại A. Gọi H là trung điểm BC. Từ H kẻ HD vuông góc AB tại D và HE vuông góc với AC tại E. a/ Chứng minh: tam giac HDB = tam giacHEC b/ Chứng minh : AD=AE. c/ Qua A kẻ đường thẳng xy song song BC, tia HD cắt xy tại M, tia HE cắt xy tại N. Chứng minh tam giác HMN là tam giác cân?
giup tui voii tks nhieuu
Cho △ABC vuông tại A . Gọi D là điểm thuộc cạnh BC sao cho Bd = BA và H là trung điểm của AD . Tia BH cắt AC tại E . Tia DE cắt tia BA tại M . Chứng minh :
a, △ABH = △DBH
b, △AED cân
c, Qua điểm D kẻ đường thẳng song song với BE cắt AC tại F . Gọi K là giao điểm của DE và HF . Chứng minh KD = 2KE
Cho △ABC vuông tại A . Gọi D là điểm thuộc cạnh BC sao cho Bd = BA và H là trung điểm của AD . Tia BH cắt AC tại E . Tia DE cắt tia BA tại M . Chứng minh :
a, △ABH = △DBH
b, △AED cân
c, Qua điểm D kẻ đường thẳng song song với BE cắt AC tại F . Gọi K là giao điểm của DE và HF . Chứng minh KD = 2KE